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ABSTRACT: The application of the Python programming language for finding local extrema
of functions of two variables highlights the advantages of modern information technologies in perform-
ing complex and time-consuming algebraic computations. This article emphasizes Python’s capacity
to simplify and accelerate processes that would otherwise require significant manual effort through
traditional mathematical methods. Two specific examples are discussed, where classical "by hand"
calculations would be laborious and prone to error. The article presents a clear procedure and accom-
panying Python code that automates the determination of local extrema, demonstrating the efficiency
and precision achievable through computational approaches. This showcases the practical benefits of
integrating Python into advanced mathematical problem-solving.
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1 Introduction
The concept of mathematical competence has evolved to include the ability to work with

modern software systems. By utilizing programming languages like Python, students develop
crucial skills in algorithmic thinking and problem-solving, broadening their digital competence
beyond the traditionally passive use of technology. Python’s versatility in computational mathe-
matics allows learners to deepen their mathematical understanding and enhance their conceptual
knowledge.

The rapid advancement of information technology has introduced a wide range of tools that
can tackle both simple and complex mathematical challenges. Students today have access to pow-
erful software applications that facilitate their learning and problem-solving processes. A notable
example is the widespread use of Python in the field of mathematical analysis, where it can be
leveraged to automate tedious and error-prone calculations.

In recent years, the approach to teaching has undergone significant changes, as educators
must now incorporate software tools into their curriculum to align with the evolving technological
landscape. The future belongs to those who embrace these advancements and integrate them into
education, not as mere shortcuts, but as tools that enhance the acquisition of deeper knowledge.

In this article, we will illustrate the application of Python in finding local extrema of func-
tions with multiple variables. The process of solving such problems manually is not only labor-
intensive but also carries a high risk of errors. Therefore, the article presents a Python-based
procedure that automates the entire process, ensuring accuracy and efficiency. By introducing
such technologies into calculus classes, students gain a significant advantage, as they are able to
focus on understanding core mathematical concepts while benefiting from the precision and speed
of modern computational tools.

2 Theoretical formulation and Python Code
Although finding extrema of multi-variable functions is a common problem students are

taught early on in their bachelor’s degree, we would like to recall the following definitions and
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theorem.

Definition 1. [1] Suppose f : U →R where U ⊆Rp, p ∈N and the partial derivatives of f all exist.
Define the gradient of f denoted by ∇ f (x) to be the vector

∇ f (x) =
(

fx1(x), fx2(x), . . . , fxp(x)
)
.

Definition 2. [1] The matrix H(x) whose i jth entry at the point x is ∂ 2 f
∂xi∂x j

is called the Hessian
matrix.

Definition 3. [1] Suppose f : U → R where U ⊆ Rp, p ∈ N. A point x ∈ U is called a local
minimum if f (x) ≤ f (y) for all y ∈ U sufficiently close to x. A point x ∈ U is called a local
maximum if f (x) ≥ f (y) for all y ∈ D( f ) sufficiently close to x. A local extremum is a point of
U which is either a local minumum or a local maximum. If there exists a direction in which when
f is evaluated on a line through x having this direction and the resulting function of one variable
as a local minimum and there exists a different direction in which when f is evaluated on the line
through x with this direction, the resulting function of one variable has a local maximum, x is
called a saddle point of f .

Theorem 1. [1] Let f : U →R for U an open set in Rp, p ∈N, f be a C2 function and suppose that
at some x ∈U,∇ f (x) = 0. Alse let µ and λ be respectively the largest and smallest eigenvalues of
the matrix H(x). If λ > 0, then f has a local minimum at x. If µ < 0, then f has a local maximum
at x. If λ < 0 and µ > 0, then x is a saddle point for f . If either λ or µ equals zero, the test fails.

Usually Theorem 1 is not used on its own, but instead the definiteness of the Hessian is
analysed: positive definiteness leads to a local minimum, negative definiteness – to a maximum,
neither leads to a saddle, and if the determinant of the Hessian being zero, the test is inconclusive.
In practice, often the following theorem is used:

Theorem 2. [2] The symmetric matrix A is

• positive definite if and only if all its leading principal minors are positive;

• negative definite if and only if its leading principal minors alternate their signs, beginning
with a negative sign.

Seeing as H(x) is symmetric, this criterion usually leads to simpler computations. However,
doing these computations by hand is still error-prone and could lead to losing track of the main
idea behind the process. In order to avoid that, one could use the following Python code:

1 import sympy as sym
2
3 def l o c a l _ e x t r e m a ( f , x ) :
4 p r i n t ( " f =" )
5 sym . p p r i n t ( f )
6 f _ g r a d = t u p l e ( sym . d i f f ( f , y ) f o r y in x )
7 p r i n t ( " G r a d i e n t o f f =" )
8 sym . p p r i n t ( f _ g r a d )
9 c r i t i c a l _ p o i n t s = sym . s o l v e ( f _ g r a d )

10 i f type ( c r i t i c a l _ p o i n t s ) == d i c t :
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11 c r i t i c a l _ p o i n t s = [ c r i t i c a l _ p o i n t s ]
12 p r i n t ( " C r i t i c a l P o i n t s : " , end = ’ ’ )
13 f o r p o i n t in c r i t i c a l _ p o i n t s :
14 p r i n t ( p o i n t , end = " , " )
15 h e s s i a n = sym . h e s s i a n ( f , x )
16 p r i n t ( " \ n H e s s i a n o f f =" )
17 sym . p p r i n t ( h e s s i a n )
18 f o r c r i t _ p in c r i t i c a l _ p o i n t s :
19 p r i n t ( f " \ n T e s t f o r { c r i t _ p } . " )
20 e i g e n v a l u e s = l i s t (map ( lambda x : x . e v a l f ( chop = True ) , l i s t (

h e s s i a n . subs ( c r i t _ p ) . e i g e n v a l s ( ) . keys ( ) ) ) )
21 m, l = max ( e i g e n v a l u e s ) , min ( e i g e n v a l u e s )
22 p r i n t ( f "m = {m} , l = { l } " )
23 i f l > 0 :
24 p r i n t ( f " The s m a l l e s t e i g e n v a l u e l = { l } > 0 , t h e r e f o r e we

have a l o c a l minimum f_min = { f . subs ( c r i t _ p ) } . " )
25 e l i f m < 0 :
26 p r i n t ( f " The b i g g e s t e i g e n v a l u e m = {m} < 0 , t h e r e f o r e we

have a l o c a l maximum f_max = { f . subs ( c r i t _ p ) } . " )
27 e l i f l <0 and m > 0 :
28 p r i n t ( f " The s m a l l e s t e i g e n v a l u e l = { l } < 0 , whereas t h e

b i g g e s t one m = {m} > 0 , t h e r e f o r e we have a s a d d l e p o i n t f _ s a d d l e =
{ f . subs ( c r i t _ p ) } . " )

29 e l s e :
30 p r i n t ( f " The { ’ s m a l l e s t ’ i f l ==0 e l s e ’ b i g g e s t ’} e i g e n v a l u e

i s e q u a l t o z e r o . T h e r e f o r e , t h e t e s t i s i n c o n c l u s i v e . " )

In it the parameters of the function local_extrema are the function and a list of the variables
respectively. We find the gradient of the function (6), solve the system ∇ f (x) = 0 (9), find the
Hessian (15) and for each critical point, we find the eigenvalues and use Theorem 1 to decide what
the type of the critical point is (18-30). During that process, we print every intermediate result.

We have preferred to use Theorem 1, due to its ease of coding. We believe that it will not
cause any confusion if one decides to use Theorem 2. One would still be able to verify most of
their calculations, leaving only some uncertainty about the leading principal minors. That would
not be a major issue due to the code classifying the critical points and thus hinting at what the signs
of the leading principal minors need to be.

Using this code to get a detailed solution to a local extrema problem can greatly aid the
student in both understanding the process of solution and checking for possible miscalculations
they may have made. We will show its utility in the following examples.

3 Examples
Example 1. [3] Find the critical points of f (x,y) = arctan(x3 +2y3 −4xy), classify them and find
the value of the function at those points.

One way to start the code would be to place the variables in a list manually, as is shown
below.

1 x , y = sym . symbols ( " x " , r e a l = True ) , sym . symbols ( " y " , r e a l = True )
2 f = sym . a t a n ( x **3 + 2*y**3 − 4*x*y )
3 l o c a l _ e x t r e m a ( f , [ x , y ] )
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The result returned is
f =
atan

(
x3 −4xy+2y3)

Gradient of f =(
3x2−4y

(x3−4xy+2y3)
2
+1

, −4x+6y2

(x3−4xy+2y3)
2
+1

)
Critical Points : x : 0,y : 0,x : 2∗2∗∗(2/3)/3,y : 2∗2∗∗(1/3)/3,
Hessian of f =

6x
(x3−4xy+2y3)

2
+1

− (3x2−4y)(6x2−8y)(x3−4xy+2y3)(
(x3−4xy+2y3)

2
+1

)2 −(−8x+12y2)(3x2−4y)(x3−4xy+2y3)(
(x3−4xy+2y3)

2
+1

)2 − 4
(x3−4xy+2y3)

2
+1

−(−8x+12y2)(3x2−4y)(x3−4xy+2y3)(
(x3−4xy+2y3)

2
+1

)2 − 4
(x3−4xy+2y3)

2
+1

12y

(x3−4xy+2y3)
2
+1

− (−8x+12y2)(−4x+6y2)(x3−4xy+2y3)(
(x3−4xy+2y3)

2
+1

)2


Test for {x : 0,y : 0}.

m = 4, l =−4
The smallest eigenvalue l =−4 < 0, whereas the biggest one m = 4 > 0, therefore we have a
saddle point f _saddle = 0.
Test for {x : 2∗2∗∗(2/3)/3,y : 2∗2∗∗(1/3)/3}.
m = 5.25139940381636, l = 1.58072896499492
The smallest eigenvalue l = 1.58072896499492> 0, therefore we have a local minimum f _min=
−atan(32/27).

As we can see, all of the necessary derivatives are computed and the critical points are anal-
ysed for potential extrema.

Example 2. Find the critical points of f (x,y,z) = z ln(z)− z− z ln(xy)+ xy+ x2 + 2y2 − 4x− 2y,
classify them and find the value of the function at those points.

With the addition of more variables, writing them out manually can become tedious. That is
why we present a second, more automatic way to use the function local_extrema:

1 n = 3
2 x = [ sym . symbols ( f " x{ i } " , r e a l = True ) f o r i in range ( 1 , n +1) ]
3 f = x [ 2 ] * sym . l o g ( x [ 2 ] ) − x [ 2 ] − x [ 2 ] * sym . l o g ( x [ 0 ] * x [ 1 ] ) + x [ 0 ] * x [ 1 ] +

x [ 0 ] * * 2 + 2*x [1]**2 −4* x [0] −2* x [ 1 ]
4 l o c a l _ e x t r e m a ( f , x )

This way we only need to specify how many variables we have and use list comprehension
to fill out the necessary list of variables. We can them work with the list directly in order to define
f . The result is
f =
x2

1 + x1x2 −4x1 +2x2
2 −2x2 + x3 log(x3)− x3 log(x1x2)− x3

Gradient of f =(
2x1 + x2 −4− x3

x1
, x1 +4x2 −2− x3

x2
, log(x3)− log(x1x2)

)
Critical Points : {x1 : 2,x2 : 1/2,x3 : 1},
Hessian of f =2+ x3

x2
1

1 − 1
x1

1 4+ x3
x2

2
− 1

x2

− 1
x1

− 1
x2

1
x3


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Test for {x1 : 2,x2 : 1/2,x3 : 1}.
m = 8.71666734232966, l = 0.438015839800740
The smallest eigenvalue l = 0.438015839800740> 0, therefore we have a local minimum f _min=
−9/2.

The only two downsides to this method is that one does not use the usual labeling of the
variables as x,y and z and that there is a slight inconsistency with the way the variables xi are
visualized.
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