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1 Introduction
The Banach contraction principle’s [1] importance hardly needs an introduction. Ever since

its formulation, it has been used both in theory and application for reasoning about equations of
the form T x = x. Such success has prompted the development of many generalizations.

One generalization addresses problems, where the cyclic map T : A → B and T : B → A
does not have a fixed point. In that case, conditions for the existence and uniqueness of a suitable
closest element to T x, called a best proximity point, are sought [5]. That turns the fixed point
problem into an optimization problem, often in the setting of uniformly convex Banach spaces,
minx∈A∪B{∥x−T x∥}. An investigation for suitable conditions on the sets A,B in complete metric
spaces for existence and uniqueness of best proximity points has first been conducted in [20]. The
theory of best proximity points has its share of applications, some being in differential equations
[12] and game theory [11].

Another generalization consists of looking for fixed points when the contraction condition
holds only for some elements [16]. There are a multitude of fixed point theorems in partially
ordered metric spaces, e.g., results for nonlinear matrix equations [16], for coupled fixed points
[2], for general orderings defined via a P set [13], et cetera.

Yet another type of generalization is found in [9, 10, 17]. In this case the mapping has
a contraction iterate at a point, that is, the contraction condition is valid only after n repeated
applications of T on x, n being different for different x. This leads to mappings that could exhibit
highly oscillatory behavior and yet converge to a fixed point by the simple Picard iteration.

The goal of this paper is to unite these three generalizations into one result, that is, to find
existence and uniqueness conditions for best proximity points for a subset of A×B, where the
contraction condition requires a varying amount of applications of T , depending on the element on
which T is being applied.

2 Preliminaries
In what follows, we will use the notations: N for the set of natural numbers, R for the set of

real numbers, (X ,ρ) is a metric space and A,B ⊂ X . We will denote by dist(A,B) = inf{ρ(a,b) :
A ∈ A,b ∈ B} the distance between the sets A and B.

The theory of best proximity points obtained by cyclic maps was initiated in [5].

Definition 1. [5] Let A and B be nonempty subsets of a metric space X . A map T : A∪B → A∪B
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is a cyclic map if
T (A)⊂ B and T (B)⊂ A.

Definition 2. [5] Let A and B be nonempty subsets of a metric space X , such that A∪B = /0. We
say that x ∈ A∪B is a best proximity point if

d(x,T x) = dist(A,B).

Definition 3. ([5]) Let (X ,ρ) be a metric space, A and B be subsets of X . We say that the map
T : A∪B → A∪B is a cyclic contraction map, if it is a cyclic map and satisfies the inequality

ρ(T x,Ty)≤ αρ(x,y)+(1−α)dist(A,B)

for some α ∈ (0,1) and every x ∈ A, y ∈ B.

In order to get results about existence and uniqueness, the notion of a uniform convexity of
the underlying Banach space is crucial.

Definition 4. ([3, 6]) Let (X ,∥ · ∥) be a Banach space. For every ε ∈ (0,2] we define the modulus
of convexity of ∥ · ∥ by

δ∥·∥(ε) = inf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥ : x,y ∈ BX ,∥x− y∥ ≥ ε

}
.

The norm is called uniformly convex if δX(ε) > 0 for all ε ∈ (0,2]. The space (X ,∥ · ∥) is then
called uniformly convex Banach space.

Whenever the underlying space is a Banach space (X ,∥ ·∥) we will consider the metric to be
the one induced by the norm, i.e., ρ(x,y) = ∥x− y∥.

Theorem 1. ([5]) Let A and B be nonempty closed and convex subsets of a uniformly convex
Banach space (X ,∥ · ∥). Suppose T : A∪B → A∪B be a cyclic contraction map, then there exists
a unique best proximity point x of T in A.

Later on, it has been observed [20] that the uniform convexity of the underlying Banach
space is too restrictive an assumption. Several notions that can replace uniform convexity have
been considered in [8, 18, 19, 20]. Connections between the mentioned notions, uniform convexity
and some generalizations have been presented in [21].

Definition 5. [13] Let (X ,d) be a metric space. We say that two sequences {xn}, {yn} ⊂ X are
Cauchy equivalent if limn→∞ d(xn,yn) = 0.

Definition 6. [20] Let (X ,d) be a metric space and A,B ⊂ X be non-empty. We say that the
ordered pair (A,B) satisfies the property UC if for any sequences {xn},{zn}⊂ A and {yn}⊂ B such
that limn→∞ d(xn,yn) = limn→∞ d(zn,yn) = dist(A,B), the sequences {xn} and {zn} are Cauchy
equivalent.

Theorem 2. ([20]) Let A and B be nonempty closed subsets of a complete metric space (X ,ρ),
such that the ordered pairs (A,B) satisfy the property UC. Let T : A∪B → A∪B be a cyclic map
and there exist k ∈ [0,1), so that the inequality

ρ(T x,Ty)≤ k max{ρ(x,y),ρ(x,T x),ρ(y,Ty)}+(1− k)dist(A,B)
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holds for all x ∈ A and y ∈ B.
Then there is a unique best proximity point x of T in A, the sequence of successive iterations

{T 2nx0}∞
n=1 converges to x for any initial guess x0 ∈ A. There is at least one best proximity point

y ∈ B of T in B. Moreover, the best proximity point y ∈ B of T in B is unique, provided that the
ordered pair (B,A) has the UC property.

The first result about fixed points in partially ordered metric spaces is in [16], where the
contractive condition ρ(T x,Ty) ≤ kρ(x,y) is weakened by assuming that it is satisfied only for
x ≼ y.

Theorem 3. ([16]) Let (X ,d,≼) be a partially ordered complete metric spaces and f : X → X be
a continuous, monotone (i.e., either order preserving or order reversing) map, such that there is
k ∈ [0,1) so that the inequality

d(T x,Ty)≤ kd(x,y)

holds true for arbitrary x,y ∈ X , satisfying x ≽ y. A fixed point ξ ∈ X of T exists if there is x0 ∈ X
such that either x0 ≼ f x0 or x0 ≽ f x0.

The fixed point ξ will be unique if each pair of elements x,y ∈ X possesses a lower bound or
an upper bound.

The partial order in the underlying metric space (X ,ρ) assures that only for some elements
from X the contractive condition is satisfied. This idea has later been generalized in [13] by replac-
ing the notion of partial order with P sets in X ×X . The main purpose of the sequence of articles
[13, 14, 15] is the investigation of coupled fixed points, where the P sets were subsets of X4. The
ideas about coupled fixed points from these articles have been developed for fixed points in [7].

Definition 7. ([7]) Let (X ,d) be a metric space, F : X → X and P⊂ X ×X . The set P is called F-
regular provided that (x,F(x))∈P for every sequence (xn,F(xn)),n∈N in P such that limn→∞ xn =
x.

Definition 8. ([7]) Let (X ,d) be a metric space. F : X → X be a map and P ⊂ X × X be F-
regular. Let V = {x ∈ X : (x,F(x)) ∈ P} we say that the function T : X → R∪{+∞} is lower
l.s.c. on V (u.s.c on V ) if at any x0,xn ∈ V , such that limn→∞ xn = x0, there holds liminf

n→∞
T (xn) ≥

T (x0)(limsup
n→∞

T (xn)≤ T (x0)). Additionally, if T (x) ̸≡+∞ for x ∈V , it is called a proper function

on V .

Definition 9. ([7]) Let (X ,d,≼) be a partially ordered metric space. We say that a map f : X → X
is a l.s.c. (u.s.c.) with respect to ≼ if any sequence xn, such that xn ≍ x0 for all n ∈ N and
limn→∞ xn = x0 there holds liminf

n→∞
f (xn)≽ f (x0)(limsup

n→∞

f (xn)≼ f (x0)).

Theorem 4. ([7]) Let (X ,d) be a complete metric space, F : X → X be a map, P⊂ X ×X and let
P be F-regular. Let V = {x ∈ X : (x,F(x)) ∈ P} and T : X →R∪{+∞} be a proper l.s.c. bounded
from below function on V .

Let ε > 0 be arbitrary but fixed. Let u0 ∈V be such that

(1) T (u0)≤ inf
v∈V

T (v)+ ε.

Then there exists x ∈V such that
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(i) T (x)≤ inf
v∈V

T (v)+ ε

(ii) d(x,u0)≤ 1

(iii) for all w ∈V,w ̸= x there holds T (w)> T (x)− εd(w,x).

Definition 10. [15] Let (X ,d) be a metric space, P ⊂ X ×X and F : X → X be a mapping. P is
called F-closed if

(x,y) ∈ P⇒ (F(x),F(y)) ∈ P.

The next examples are well known [13].

Example 1. Let (X ,d,≼) be a partially ordered metric space. Let F : X → X be an increasing
function, i.e., F(x) ≼ F(y), provided that x ≼ y. Then the set P = {(x,y) ∈ X ×X : x ≼ y} is
F-closed.

Example 2. Let (X ,d,≼) be a partially ordered metric space. For F : X → X let F(x) be compa-
rable with F(y), i.e. F(x)≍ F(y). Then the set P= {(x,y) ∈ X ×X : x ≍ y} is F-closed.

The next theorem is a combination of the Banach fixed point theorem and the results of
[13, 16].

Theorem 5. ([7]) Let (X ,d,≼) be a partially ordered metric space, P= {(x,y)∈ X ×X : x ≽ y},F :
X → X be a mapping l.s.c. with respect to ≼ and V = {x ∈ X : (x,F(x)) ∈ P}. Suppose that P is
F-closed, V ̸= /0 and the function x 7→ d(x,F(x)) is l.s.c. on V .

If there exists α ∈ [0,1) such that

d(F(x),F(y))≤ αd(x,y)

for all (x,y) ∈ P, then F has a fixed point in X .
If, additionally, for every pair x,y of fixed points there exists z ∈ X such that one of the

inclusions (x,z),(z,y) ∈ P,(x,z),(y,z) ∈ P or (z,x),(z,y) ∈ P holds, then the fixed point is unique.

A different approach has been proposed in [17].

Theorem 6. ([17]) Let X be a Banach space, and T : X → X a continuous mapping satisfying the
condition: there exists a constant α ∈ (0,1) such that for each x ∈ X , there is a positive integer
n(x) such that for all y ∈ X

ρ(T n(x)y,T n(x)x)≤ αρ(y,x).

Then T has a unique fixed point z and lim
s→∞

T sx = z for each x ∈ X .

Later, the maps introduced in [17] have been named maps iterated at a point. We would like
to note that generalizations of the results from [17] have been presented in [10, 9]
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3 Main Result
Inspired by [7, 14], we give the following definitions:

Definition 11. Let (X ,d) be a metric space, A,B ⊂ X and P⊂ A×B, A∩B = /0. Let {xn}∞
n=0 be a

sequence such that x2n ∈ A and x2n+1 ∈ B. The triple (A∪B,d,P) is said to be:

• cyclically e-P-regular if for any sequence {x2n}, convergent to x∗, such that (x2n,x2n+1) ∈ P
for all n ∈ N, there holds (x∗,x2n+1) ∈ P for all n ∈ N∪{0}

• cyclically o-P-regular if for any sequence {x2n+1}, convergent to x∗, such that (x2n,x2n+1) ∈
P for all n ∈ N, there holds (x2n,x∗) ∈ P, for all n ∈ N∪{0}.

Definition 12. Let X be a non-empty set, A,B ⊂ X , P⊂ A×B and let T : A∪B → A∪B be a cyclic
map. We say that P is cyclically T-closed if

(x,y) ∈ P⇒ (Ty,T x) ∈ P

Definition 13. We say that P has the cyclically transitive property if from (x,y),(z,y),(z,u) ∈ P it
follows that (x,u) ∈ P

We will first prove a technical lemma.

Lemma 1. Let (X ,d) be a metric space, A,B ⊂ X be nonempty such that A∩B = /0, P ⊂ A×B,
T : A∪B → A∪B be a cyclic map, a ∈ A,b ∈ B and there exists k ∈ [0,1) such that for all x ∈ A∪B
there is n(x)≡ 1 (mod 2) ∈ N, such that for all y ∈ A∪B, where (x,y) or (y,x) ∈ P, we have

d(T n(x)(x),T n(x)(y))≤ kd(x,y)+(1− k)dist(A,B).

Then if (T 2na,T 2mb) ∈ P for n,m ∈ N∪{0}, then supn∈N∪{0}{d(T 2nb,a)}<+∞.

Proof. Let l = max{d(T ca,T da),c = 0,1,d = 0,1,2 . . . ,max(n(a),n(b))}. There exist p,q,s ∈ N
such that 2n+1 = pn(a)+qn(b)+ s,0 ≤ p−q ≤ 1,0 ≤ s < max{n(a),n(b)}. Then

d(T 2nb,a) ≤ d(T 2nb,T n(Ta)Ta)+d(T n(Ta)Ta,a)
≤ kd(T 2n−n(Ta)b,Ta)+(1− k)dist(A,B)+ l
≤ k(d(T 2n−n(Ta)b,T n(a)a)+d(T n(a)a,a))+(1− k)dist(A,B)+ l
≤ k2(d(T 2n−n(Ta)−n(a)b,a))+(1− k2)dist(A,B)+ l + kl
≤ . . .

≤ kp+qd(T sb,T ca)+(1− kp+q)dist(A,B)+ l ∑
s+p−1
i=0 ki

≤ (1− kp+q)dist(A,B)+ l ∑
s+p
i=0 ki ≤ dist(A,B)+ l

1−k <+∞.

Therefore, supn∈N∪{0}{d(T 2nb,a)} is finite.

Now we are ready to proceed with the main result.

Theorem 7. Let (X ,d) be a complete metric space, A,B ⊂ X be nonempty such that A∩B = /0, the
pair (A,B) have the UC property, P⊂ A×B, T : A∪B → A∪B be a cyclic map and there hold

(i) P is cyclically T -closed and has the cyclically transitive property;
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(ii) the triple (A∪B,d,P) is cyclically e-P-regular;

(iii) there exists x0 ∈ A such that (x0,T x0) ∈ P;

(iv) there exists k ∈ [0,1) such that for all x ∈ A∪B there is n(x)≡ 1 (mod 2) ∈N, such that for
all y ∈ A∪B, where (x,y) or (y,x) ∈ P, we have

(2) d(T n(x)(x),T n(x)(y))≤ kd(x,y)+(1− k)dist(A,B).

Then there exists a best proximity point x∗ in A and for any arbitrarily chosen x0 ∈ A, such that
(x0,T x0) ∈ P the iterated sequence x2n = T 2nx0 converges to a best proximity point. Furthermore,
x∗ is a fixed point of T 2. Moreover, there hold

(a) for any x∈A such that (x0,T x)∈P or (x,T x0)∈P, the sequences x2n = T 2nx0 and u2n = T 2nx
are Cauchy equivalent and hence u2n converges to the same point x∗;

(b) if y∗ ∈ A is a best proximity point and either (x0,Ty∗) ∈ P or (y∗,T x0) ∈ P or there exists
z ∈ A so that either (x0,T z),(y∗,T z) ∈ P or (z,T x0),(z,Ty∗) ∈ P then y∗ = x∗;

(c) if additionally we suppose that for every x,y ∈ A such that neither (x,Ty) ∈ P or (y,T x) ∈ P
there is z ∈ A so that either (x,T z),(y,T z) ∈ P or (z,T x),(z,Ty) ∈ P then x∗ is the unique
proximity point.

Proof. By assumption, we have x0 ∈ A such that (x0,T x0) ∈ P.
By (i) it is clear that

(3) (T 2nx0,T 2m+1x0) for n,m ∈ N∪{0}.

Setting a= x0 and b= T x0 in Lemma 1, we get that r = supn∈N∪{0}{d(T 2n+1x0,x0)} is finite.
Let us define the sequence zn thus: z0 = x0,z1 = T m0z0 where m0 = n(z0), z2 = T m1z1,

where m1 = n(z1) and in general zn+1 = T mnzn,mn = n(zn). For the rest of the paper we will
also use xn+1 = T xn. Let us denote sn = ∑

n
i=0 mi and note that s2n+1 is even, whereas s2n is odd for

n ∈ N∪{0}. From the chain of inequalities

d(zn+1,zn) = d(T snx0,T sn−1x0) = d(T mn−1T mn+sn−2x0,T mn−1T sn−2x0)
≤ kd(T mn+sn−2x0,T sn−2x0)+(1− k)dist(A,B)≤ . . .
≤ knd(T mnx0,x0)+(1− kn)dist(A,B)≤ knr+(1− kn)dist(A,B)

we conclude that d(zn+1,zn)→ dist(A,B).
We will prove that z2n is a Cauchy sequence by way of contradiction. Let us suppose that

z2n is not a Cauchy sequence, i.e. there exists ε > 0 such that for every 2N, N ∈ N there exist
l1(N), l2(N)≥ 2N, l1, l2 ∈ 2N such that d(zl1,zl2)> ε , which would mean, taking into account that
limN→∞ l1(N) = limN→∞ l2(N) = ∞, that

(4) lim
N→∞

d(zl1,zl2) ̸= 0
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Let us observe the inequalities

d(zl1 ,z2N−1) ≤ kd(zl1−1,z2N−2)+(1− k)dist(A,B)
≤ . . .
≤ k2N−1d(zl1−(2N−1),z0)+(1− k2N−1)dist(A,B)
≤ k2N−1r+(1− k2N−1)dist(A,B)→ dist(A,B).

We see that d(zl1 ,z2N−1) → dist(A,B). Similarly, we can show that d(zl2,z2N−1) → dist(A,B).
From the UC property of (A,B) we conclude that d(zl1,zl2)→ 0, contradicting (4). Thus, z2n is a
Cauchy sequence, and there exists x∗ ∈ A, which is a limit of the sequence {z2n}.

Next, we will show that {z2n} and {x2n} are Cauchy equivalent. Let us choose m ∈ N such
that 2m(n)≥ s2n. We observe that limn→∞ m(n) = ∞ and

d(x2m,z2n+1) = d(T 2mx0,T s2nx0) = d(T m2nT 2m−m2nx0,T m2nT s2n−1x0)
≤ kd(T 2m−m2nx0,T s2n−1x0)+(1− k)dist(A,B)≤ . . .
≤ k2n+1d(T 2m−s2nx0,x0)+(1− k2n+1)dist(A,B)
≤ k2n+1r+(1− k2n+1)dist(A,B).

If follows that d(x2m,z2n+1)→ dist(A,B) and from the UC property we get that x2m → x∗.

We will establish that d(x2n,x2n+1)→ dist(A,B). We can find p(n), i(n) ∈ N∪{0} such that
2n = s2i + p,0 ≤ p < s2i+1 − s2i. Observing that 2i(n) → ∞ as n → ∞ and d(x0,T 2ax0) ≤ M for
a ∈ N and M > 0, since the sequence {x2n} is convergent, we get

d(x2n,x2n+1) ≤ d(x2n,z2i)+d(z2i,x2n+1)
≤ d(x2n,z2i)+ k2id(x0,T p+1x0)+(1− k2i)dist(A,B)
≤ d(x2n,z2i)+ k2i max{r,M}+(1− k2i)dist(A,B).

Thus, we have shown that d(x2n,x2n+1)→ dist(A,B).
To establish that x∗ is a fixed point of some power of T , we first observe that the triple

(A ∪ B,d,P) is cyclically e-P-regular by assumption. Since (x∗,x2m+1) ∈ P for m ∈ N ∪ {0}
and P being cyclically T -closed we get that (x2m,T x∗) ∈ P for all m ∈ N. Furthermore, since
(x∗,x2n+1),(x2n,x2n+1),(x2n,T x∗) ∈ P, then by the cyclically transitive property of P we get that
(x∗,T x∗) ∈ P. It is easily proven true that (T ax∗,T bx∗) ∈ P for a,b ∈ N∪{0},a−b ≡ 1 (mod 2).

Let us use v = n(x∗)+n(T n(x∗)x∗) for simplicity. By the inequalities

(5) d(x2n+1,x∗)≤ d(x2n+1,x2n)+d(x2n,x∗)→ dist(A,B)

and for 2n+1 ≥ n(x∗)+n(T n(x∗))

d(x2n+1,T vx∗)≤ k2d(x2n+1−v,x∗)+(1− k2)d(A,B)→ d(A,B)

we get that d(x2n+1,T vx∗)→ dist(A,B). By the UC property we get that limn→∞ d(x∗,T vx∗) = 0
and we conclude that x∗ = T vx∗.

Next we will show that d(x∗,T x∗) = dist(A,B). Observing that by applying (2) twice, we get

d(x∗,T x∗) = d(T vx∗,T v+1x∗)
≤ k2d(x∗,T x∗)+(1− k2)dist(A,B),
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from which it follows that (1− k2)d(x∗,T x∗)≤ (1− k2)dist(A,B) and using

dist(A,B)≤ d(x∗,T x∗)≤ dist(A,B)

we conclude that d(x∗,T x∗) = dist(A,B).
What is left to do is to show that T 2x∗ = x∗. In order to do that, we will prove that

(x2m,T 2n+1x∗) ∈ P,m,n ∈ N∪{0} by induction. We have shown that (x2m,T x∗) ∈ P,m ∈ N. By
(x0,x1),(x2,x1),(x2,T x∗) ∈ P, it follows that (x2m,T x∗) ∈ P,m ∈ N∪ {0}. If (x2m,T 2l+1x∗) ∈
P, m ∈ N∪ {0} for some l ∈ N∪ {0}, then by using (x2m−2,T 2l+1x∗) ∈ P and P being cycli-
cally T -closed, it follows that (x2m,T 2l+3x∗) ∈ P,m ∈ N, and via (3), (x0,x2m+1),(x2m,x2m+1),
(x2m,T 2l+3x∗)∈ P and the cyclically transitive property of P, we conclude that (x2m,T 2l+3x∗)∈ P,
m ∈ N∪{0}. Therefore, (x2m,T 2n+1x∗) ∈ P,m,n ∈ N ∪ {0}. Setting a = x0 and b = T x∗ in
Lemma 1, we get that r∗ = supn∈N∪{0}{d(T 2n+1x∗,x0)} is finite. Let us choose q,n ∈ N such
that q(n)v ≥ s2n. Due to s2n being odd and v being even, 2+qv−s2n is odd, and by the inequalities

d(T 2x∗,xs2n) = d(T 2+qvx∗,T s2nx0)
≤ k2n+1d(T 2+qv−s2nx∗,x0)+(1− k2n+1)dist(A,B)
≤ k2n+1r∗+1− k2n+1dist(A,B)→ dist(A,B)

and (5), it follows from the UC property of (A,B) that T 2x∗ = x∗.
(a)Without loss of generality, let us assume that (x,T x0) ∈ P and define un = T nx. Let us find
m,n ∈ N such that s2n+1 ≥ 2m(n)≥ s2n and observe that

d(u2n,xs2n) = d(T 2mx,T s2nx0)
≤ k2n+1d(T 2m−s2nx,x0)+(1− k2n+1)dist(A,B)
≤ k2n+1 max{d(T ix,x0) : i = 0,1,2, . . .m2n+1}+(1− k2n+1)dist(A,B)→ dist(A,B)

and by the UC property of (A,B) we get that {u2n} and {x2n} are Cauchy equivalent.

(b) If we have (x0,Ty∗) or (y∗,T x0) ∈ P then by (a) we conclude that x∗ = y∗.
In order to finish the proof of Theorem 7, we will state and prove the following

Proposition 1. Let (X ,d) be a complete metric space, A,B ⊂ X be nonempty such that A∩B = /0,
the pair (A,B) has the UC property, P ⊂ A× B, T : A∪ B → A∪ B be a cyclic map and there
hold (i), (ii) and (iv). Then if we have a sequence un+1 = Tun,u0 ∈ A such that u2n → u∗, a best
proximity point, and either (u0,Tw0) or (w0,Tu0) ∈ P for wn+1 = Twn,w0 ∈ A we have that the
two sequences {u2n} and {w2n} are Cauchy equivalent.

Proof. This can be proven by replacing the powers mi of {xn} needed for (iv) by powers, needed
for the sequence {un}.

Without loss of generality, let us have z ∈ A such that (x0,T z),(y∗,T z) ∈ P. By (x0,T z) ∈ P
and (a) we find that T 2nz → x∗ and by (y∗,T z) and Proposition 1 we get that T 2nz → y∗. Therefore,
x∗ = y∗.

(c) Let us assume that there exists a different best proximity point y∗ ∈ A. We will show
that y∗ = x∗. Without loss of generality, let us have z ∈ A such that (x∗,T z),(y∗,T z) ∈ P. Then by
Proposition 1 we get that T 2nz → x∗ and T 2nz → y∗. Thus, x∗ = y∗, showing that x∗ is the unique
best proximity point in A.
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4 Applications
We will show that the classic result in [5] is a corollary of Theorem 7.

Definition 14. [5] Let A and B be nonempty subsets of a metric space X . A map T : A∪B → A∪B
is a cyclic contraction map if it satisfies:

1. T (A)⊂ B and T (B)⊂ A;

2. for some k ∈ (0,1) we have d(T x,Ty)≤ kd(x,y)+(1− k)dist(A,B) for all x ∈ A,y ∈ B.

Theorem 8. [5] Let A and B be nonempty closed and convex subsets of a uniformly convex Banach
space. Suppose T : A∪B → A∪B is a cyclic contraction map. Then there exists a unique best
proximity point x∗ in A (that is with ∥x∗−T x∗∥ = dist(A,B)). Further, if x0 ∈ A and xn+1 = T xn,
then {x2n} converges to the best proximity point.

Proof. Much like in [5], if A∩B ̸= /0, then the result follows from the Banach contraction principle.
Therefore, let A∩B = /0. We will use Theorem 7 to prove the result.

It is clear that X is a complete metric space. That the pair (A,B) has the property UC is
evident[20]. Due to T being a cyclic contraction, we get that by setting P = A×B and n(x) = 1,
x ∈ A∪B, we fulfill condition (iv). Furthermore, by P = A×B, conditions (i), (ii), (iii) and there
existing z∈A such that (x,T z),(y,T z)∈P or (z,T x),(z,Ty)∈P for all x,y∈A are trivially fulfilled.
Therefore, there exists a unique best proximity point x∗ in A, such that for x0 ∈ A and xn+1 = T xn
the sequence {x2n} converges to x∗.

We will finish with an example where one cannot use Theorem 8. However, we can apply
Theorem 7.

Example 3. Let us consider the Banach space (R2,∥ · ∥2). Let A and B be

A = {(x,y) ∈ R2 : 0 ≤ x ≤ 1,0 ≤ y ≤ x},
B = {(x,y) ∈ R2 : 0 ≤ x ≤ 1,−x−1 ≤ y ≤−1},

and let T : A∪B → A∪B be

T (x,y) =


(x,−1− y2), (x,y) ∈ A and 0 ≤ x < 1,
(x,−1), (x,y) ∈ A and x = 1,
(x,(y+1)2), (x,y) ∈ B and 0 ≤ x < 1,
(x,0), (x,y) ∈ B and x = 1.

Let us define P = {((x1,y1),(x2,y2)) ∈ A×B : x1 = x2}. Then, by Theorem 7, there exists a best
proximity point.

Indeed, X is a complete metric space, A,B ⊂ X and A∩B = /0. Due to A and B being convex
sets, it follows that the pair (A,B) has the UC property [20]. It is clear that T is a cyclic map and
that dist(A,B) = 1.

Due to x1 = x2 = x for any ((x1,y1),(x2,y2)) ∈ P and the fact that T preserves the value of
the x coordinate, we can see that conditions (i), (ii) and (iii) are fulfilled. We will show that (iv) is
also fulfilled.
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For ((x,y1),(x,y2)) ∈ P, we express y1 and y2 as

y1 = ux, u ∈ [0,1],
y2 =−1− vx, v ∈ [0,1].

Then by

∥T (x,y1)−T (x,y2)∥2 =
√
(−1− y2

1 − (y2 +1)2)2 = |(y2 +1)2 +1+ y2
1|= (y2 +1)2 +1+ y2

1

= v2x2 +1+u2x2 = v2x2 +u2x2 + x+1− x ≤ vx2 +ux2 + x+1− x
= x|ux− (−1− vx)|+1− x = x|y1 − y2|+1− x
= x∥(x,y1)− (x,y2)∥2 +(1− x)dist(A,B),

we see that
∥T (x,y1)−T (x,y2)∥2 ≤ x∥(x,y1)− (x,y2)∥2 +(1− x)dist(A,B).

If we take k = 1
2 in condition (iv), then we can use

n(x,y) =

 min
{

2n+1 : n ∈ N∪{0},2n+1 ≥ logx

(
1
2

)}
, 0 ≤ x < 1,

1, x = 1

in order to have

∥T n(x,y1)(x,y1)−T n(x,y1)(x,y2)∥2 ≤
1
2
∥(x,y1)− (x,y2)∥2 +

(
1− 1

2

)
dist(A,B).

Therefore, condition (iv) is fulfilled. Then, by Theorem 7, we conclude that there exists a best
proximity point (x,y)∈ P, such that by initiating the iteration process with an arbitrary (x0,y0)∈ A,
we get that (x2n,y2n)→ (x,y) and T 2(x,y) = (x,y). Clearly, (x,y) = (x0,0).

Furthermore, by (a) we can conclude that for any (x1,y1) ∈ A such that x1 = x0, have that
(T 2nx1,T 2ny1)→ (x0,0). This quickly follows due to ((x1,y1),(T x0,Ty0)) and ((x0,y0),(T x1,Ty1))
being both in P.

However, for x1 ̸= x2 we have that neither ((x1,y1),(T x2,Ty2)) nor ((x2,y2),(T x1,Ty1)) are
elements of P and there does not exist a z∈X that fulfills the condition in (c). Therefore, we cannot
claim that the best proximity point is unique. And indeed, every point of the form (x,0),x ∈ [0,1]
is a best proximity point.
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