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ABSTRACT: We study the spectral stability of periodic traveling wave solutions of the cnoidal
and snoidal type for the nonlinear wave equation. First we need to obtain the required spectral infor-
mation about the operator of linearization. Then we investigate the index of stability and evaluate some
quantities.
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1 Introduction
In the present paper we study the following nonlinear wave equation

(1) utt −uxx −g(u) = 0, g ∈C3(R).

For equation (1), stability of traveling wave solutions on the whole line, was considered in
[10].

Recently, the linear stability of traveling wave solutions for the second order in time nonlin-
ear differential equations has been studied extensively [1, 7, 11, 12] . In [11] the question of the
stability analysis for the second order in time PDEs is reduced to the study of stability of quadratic
pencils in the form λ 2 +2cλ∂x +H = 0, where H is a self-adjoint operator. If H has a simple
negative eigenvalue and a simple eigenvalue at zero, the authors in [11] derived the index of stabil-
ity and the abstract results were applied to Boussinesq equation, Klein-Gordon equation and beam
equation.

In this paper we are interested in the stability of periodic traveling wave solutions of (1) with
respect to perturbations that are periodic and of the same period as the corresponding wave solu-
tions. First we need to obtain the required spectral information about the operator of linearization.
Then we investigate the index of stability defined in [8].

The paper is organized as follows. In Section 2, we prove the existence of periodic traveling
waves. In Section 3, we set up the linearized problem and give the general abstract result that we
use. In Section 4, we consider the stability of periodic traveling waves of cnoidal type. In the last
section we consider the stability of periodic traveling waves of snoidal type.

2 Periodic traveling waves
We look for periodic traveling wave solutions for equation (1) in the form u(t,x) = φ(x+ct)

where c ̸=±1. It is assumed that φ is smooth in R. Replacing in (1), we get

(2) wφ
′′+g(φ) = 0,

with w = 1− c2. Integrating (2) yields

(3)
φ ′2

2
+

G(φ)

w
= a

where a ∈ R is a constant of integration and G(φ) =
∫ φ

0 g(s)ds.
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3 Linear stability overview
Take u = φ(x+ct)+v(t,x+ct)), where v(t,x) is a periodic function with respect to x with a

fundamental period T , and plug it into (1). Using (2) and ignoring all terms in the form O(v2), we
get the following linear equation for v

(4) vtt +2cvtx +Hv = 0,

where
H =−w∂

2
x −g′(φ).

If we consider the eigenvalue problem associated with (4)), that is v = eλ tV , we arrive at

λ
2V +2cλVx +HV = 0.

Definition 1. We say that the traveling wave solution φ is linearly unstable, if there exist a T -
periodic function ψ ∈ D(H) and λ : ℜλ > 0, such that

(5) λ
2V +2cλVx +HV = 0.

Otherwise, we say that φ is stable.

We can write an equivalent to (5) Hamiltonian eigenvalue problem, namely

(6) J H V⃗ = λV⃗ , V⃗ =

(
u
v

)
∈ X ×X ,

where

J =

(
0 1
−1 −2c∂x

)
, H =

(
H 0
0 1

)
.

We use the instability index count theory, as developed in [8]. We present a corollary, which
is enough for our purposes. For eigenvalue problem in the form (7), we assume that H =H ∗ has
dim(Ker(H )< ∞, and also a finite number of negative eigenvalues, n(H ), a quantity sometimes
referred to as Morse index of the operator H . In addition, J ∗ =−J We consider the eigenvalue
problem

(7) J H U⃗ = λ U⃗.

Let kr be the number of positive eigenvalues of the spectral problem (7) (i.e. the number of real
instabilities or real modes), kc be the number of quadruplets of eigenvalues with non-zero real
and imaginary parts, and k−i , the number of pairs of purely imaginary eigenvalues with negative
Krein-signature. For a simple pair of imaginary eigenvalues ±iµ,µ ̸= 0, and the corresponding

eigenvector z⃗ =
(

z1
z2

)
, the Krein index is sgn(⟨H z⃗,⃗z⟩), see [2], p. 267.

Also of importance in this theory is a finite dimensional matrix D , which is obtained from
the adjoint eigenvectors for (7). More specifically, consider the generalized kernel of J L

gKer(J H ) = span[(Ker(J H ))l, l = 1,2, . . .].
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Assume that dim(gKer(J H ))< ∞ (note that under minimal Fredholm assumptions on J ,H ,
this is indeed the case). Select an orthonormal basis in gKer(J H )⊖Ker(J H ) = span[η j, j =
1, . . . ,N]. Then D ∈ MN×N is defined via

D := {Di j}N
i, j=1 : Di j = ⟨L ηi,η j⟩.

Then, following [8], we have the following formula, relating the number of “instabilities” or
Hamiltonian index of the eigenvalue problem (7) and the Morse indices of the operators L and D

(8) kHam := kr +2kc +2k−i = n(L )−n(D).

It is well-known that the first five eigenvalues of Λ = −∂ 2
y + 6k2sn2(y,k), with periodic

boundary conditions on [0,4K(k)] are simple. These eigenvalues and corresponding eigenfunctions
are:

ν0 = 2+2k2 −2
√

1− k2 + k4, φ0(y) = 1− (1+ k2 −
√

1− k2 + k4)sn2(y,k),
ν1 = 1+ k2, φ1(y) = cn(y,k)dn(y,k) = sn′(y,k),
ν2 = 1+4k2, φ2(y) = sn(y,k)dn(y,k) =−cn′(y,k),
ν3 = 4+ k2, φ3(y) = sn(y,k)cn(y,k) =−k−2dn′(y,k),

ν4 = 2+2k2 +2
√

1− k2 + k4, φ4(y) = 1− (1+ k2 +
√

1− k2 + k4)sn2(y,k).

4 Stability of cnoidal waves
Consider the case g(s) = −s+ s3. We have the following ordinary differential equation for

ϕ ,

(9) −wϕ
′′+ϕ −ϕ

3 = 0,

where w = 1− c2. Integrating once, we get

(10) ϕ
′2 =

1
2w

(−ϕ
4 +2ϕ

2 +a),

where a is a constant of integration. Then, for w > 0 and a > 0 up to a translation, we obtain the
respective explicit formulas

(11) ϕ(x) = ϕ0cn(αx,κ),

where

(12) κ
2 =

ϕ2
0

2ϕ2
0 −2

, α
2 =

2ϕ2
0 −2
2w

=
1

w(2κ2 −1)
.

For the operator H =−w∂ 2
x +1−3ϕ2 using that sn2(y)+ cn2(y) = 1, we get

H =−w∂ 2
x +1−3ϕ2

0 cn2(αx,κ)

= wα2 [−∂ 2
y +6κ2sn2(y,κ)− (1+4κ2)

]
= wα2[Λ1 − (1+4κ2)],

where y = αx.
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It follows that the first three eigenvalues of the operator H, equipped with periodic boundary
condition on [0,4K(k)] are simple and zero is the third eigenvalue.

Hence n(H ) = 2, kernel of H is one dimensional and spanned by (ϕ ′,0).

We have ξ =

(
ϕ ′

0

)
∈ kerH . We now proceed to find the generalized kernel of J H , i.e.

the adjoint eigenvectors. Recall that we are only interested in those outside Ker(H ). We looking

for adjoint, J H

(
f
g

)
=

(
ϕ ′

0

)
, which is equivalent to

{
g = ϕ ′

−H f −2cg′ = 0.

Hence, we get H f = −2cϕ ′′ and f = −2cH−1ϕ ′′ and η =

(
f
g

)
. We need to look further at a

second order adjoints, that is solutions of J H η1 = η . A necessary condition for the solvability

of this last problem is
(
−2c∂x −1

1 0

)
η ⊥ ξ , which is equivalent to 4c2⟨H−1ϕ ′′,ϕ ′′⟩+⟨ϕ ′,ϕ ′⟩= 0.

We have H

(
f
g

)
=

(
−2cϕ ′′

ϕ ′

)
. Thus

⟨H
(

f
g

)
,

(
f
g

)
⟩= 4c2⟨H−1

ϕ
′′,ϕ ′′⟩+ ⟨ϕ ′,ϕ ′⟩.

Now we will estimate ⟨H−1ϕ ′′,ϕ ′′⟩ and ⟨ϕ ′,ϕ ′⟩. We have the following representation

⟨H−1
ϕ
′′,ϕ ′′⟩= 1

w2 ⟨H
−1

ϕ,ϕ⟩+ 1
2w2 ⟨ϕ,ϕ⟩−

1
2w

⟨ϕ ′,ϕ ′⟩.

First, we will compute ⟨H−1ϕ,ϕ⟩. We have Hϕ ′ = 0. The function

ψ(x) = ϕ
′(x)

∫ x

0

1
ϕ ′2(s)

ds,
∣∣∣∣ ϕ ′ ψ

ϕ ′′ ψ ′

∣∣∣∣= 1

is also solution of Hψ = 0. Formally, since ϕ ′ has zeros using the identity

1
sn2(y,κ)

=− 1
dn(y,κ)

∂

∂y

cn(x,κ)
sn(y,κ)

and integrating by parts, we get

ψ(x) =
1

α2ϕ0

[
cn(αx)−ακ

2sn(αx,κ)dn(αx,κ)
∫ x

0

1+ cn2(αs,κ)
dn2(αs,κ)

ds
]
.

After integrating by parts, we get

(13) ⟨H−1
ϕ,ϕ⟩=− 1

w
⟨ϕ3,ψ⟩+ ϕ2(T )+ϕ(0)2

2w
⟨ϕ,ψ⟩+Cϕ⟨ϕ,ψ⟩.

Similarly as in [3], integrating by parts yields

⟨ψ ′′,ϕ⟩= 2ψ
′(T )ϕ(T )+ ⟨ψ,ϕ ′′⟩.
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Using that Hϕ =−2ϕ3, we get

⟨ψ,ϕ3⟩=−wψ
′(T )ϕ(T ).

We have

Cϕ =− ϕ ′′(T )
2wψ ′(T )

⟨ϕ,ψ⟩+ ϕ2(T )−ϕ2(0)
2w

.

With this, we get

⟨H−1
ϕ,ϕ⟩= ψ

′(T )ϕ(T )+
ϕ2(T )

w
⟨ϕ,ψ⟩− ϕ ′′(T )

2wψ ′(T )
⟨ϕ,ψ⟩2

and

⟨H−1
ϕ,ϕ⟩=− 2

α

E2(κ)−2(1−κ2)E(κ)K(κ)+(1−κ2)K2(κ)

(2κ2 −1)E(κ)+(1−κ2)K(κ)
.

By direct estimates, we have
||ϕ||2 = ϕ2

0
α

4[E(κ)−(1−κ2)K(κ)]
κ2

||ϕ ′||2 = 4αϕ2
0
(2κ2−1)E(κ)+(1−κ2)K(κ)

3κ2 .

Finally, we get

||ϕ ′||2 +4c2⟨H−1ϕ ′′,ϕ ′′⟩ = 8
αw2

[
(2κ2−1)E(κ)+(1−κ2)K(κ)

3(2κ2−1)2

− κ2(1−κ2)K2(κ)
(2κ2−1)2[(2κ2−1)E(κ)+(1−κ2)K(κ)]

c2
]

If the above expression is negative, then the right side of (8) is odd number. With this we
proved the following theorem

Theorem 1. Periodic traveling wave solutions of cnoidal type are spectrally unstable for all

c2 >
[(2κ2 −1)E(κ)+(1−κ2)K(κ)]2

3κ2(1−κ2)K2(κ)
.

5 Stability of snoidal waves
In this case g(s) = s− s3.
We have the following ordinary differential equation for ϕ ,

(14) −wϕ
′′−ϕ +ϕ

3 = 0.

Integrating once, we get

(15) ϕ
′2 =

1
2w

ϕ
4 − 1

w
ϕ

2 +2a.

The solution of (14) is given bay

(16) ϕ(x) = ϕ0sn(αx,κ),
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where α and κ are parameters to be determined.
Since the fundamental period of elliptic function sn is 4K(κ), then the fundamental period

of ϕ(x) is

2T =
4K(κ)

α
.

We have
H =−w∂ 2

x −1+3ϕ2
0 sn2(αx,κ)

= wα2 [−∂ 2
y +6κ2sn2(y,κ)− (1+κ2)

]
,

where y = αx.
It follows that the zero is the second eigenvalue H, equipped with periodic boundary condi-

tion on [0,4K(k)] are simple and zero is the second eigenvalue.

We have ξ =

(
ϕ ′

0

)
∈ kerH . We now proceed to find the generalized kernel of J H , i.e.

the adjoint eigenvectors. Recall that we are only interested in those outside Ker(H ). We looking

for adjoint, J H

(
f
g

)
=

(
ϕ ′

0

)
, which is equivalent to

{
g = ϕ ′

−H f −2cg′ = 0.

Hence, we get H f = −2cϕ ′′ and f = −2cH−1ϕ ′′ and η =

(
f
g

)
. We need to look further at a

second order adjoints, that is solutions of J H η1 = η . A necessary condition for the solvability

of this last problem is
(
−2c∂x −1

1 0

)
η ⊥ ξ , which is equivalent to 4c2⟨H−1ϕ ′′,ϕ ′′⟩+⟨ϕ ′,ϕ ′⟩= 0.

We have H

(
f
g

)
=

(
−2cϕ ′′

ϕ ′

)
. Thus

⟨H
(

f
g

)
,

(
f
g

)
⟩= 4c2⟨H−1

ϕ
′′,ϕ ′′⟩+ ⟨ϕ ′,ϕ ′⟩.

Since ⟨ϕ ′′,φ0(αx)⟩= 0, then ⟨H−1ϕ ′′,ϕ ′′⟩ ≥ 0 and

n(D) = n(||ϕ ′||2 +4c2⟨H−1
ϕ
′′,ϕ ′′⟩) = 0.

Hence the right side of (8) is odd number

n(H )−n(D) = 1−0 = 1.
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