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1 Introduction
This paper is dedicated to the description of an unified approach for solving of different

nonlinear differential equations (the Korteweg-de Vries equation, the Schrödinger equation, the
Heisenberg equation, the Sine-Gordon equation, the Davey-Stewartson equation) presented in the
paper [1], using the connection between the soliton theory and the commuting nonselfadjoint op-
erator theory. The connection between these two mathematical theories is established by M.S.
Livšic and Y.Avishai in their paper [8]. In [1] G.S. Borisova has presented an approach to the in-
verse scattering problem and to the wave equations, based on the Livšic operator colligation theory
(or vessel theory) in the case of commuting bounded nonselfadjoint operators in a Hilbert space,
when one of the operators belongs to a larger class of nondissipative operators with asymptotics of
the corresponding nondissipative curves. With the help of this approach the generalized Gelfand-
Levitan-Marchenko equation of the cases of different differential equations (mentoned above) are
derived, relations between the wave equations of the input and the output of the generalized open
systems, corresponding to some nonlinear differential equations are obtained. We derive what kind
of differential equations are satisfied by the components of the input and the output of the corre-
sponding generalized open systems. It turns out that the components of the input and the output
satisfy the Sturm-Liouville differential equation from the form

Ly =−y′′+q(x)y = λy

in the case of the nonlinear Schrödinger equation and the 3-dimensional differential equation from
the form

Ly =
d3y
dy3 − p(x)

dy
dx

−q(x)y = λy

in the case of the Korteweg-de Vries equation.
The Livšic operator colligation theory investigates nonselfadjoint operators, based on the

colligation theory. This implies that instead of the nonselfadjoint operators M.S. Livšic considers
the introduced so-called operator colligation (for one operator or several operators), which can be
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considered as a generalization of the nonselfadjoint operator or several operators. To the intro-
duced operator colligation there corresponds the so-called characteristic operator function and the
corresponding open system, which has been investigated.

Let us consider the case of two commuting bounded nonselfadjoint operators A, B in a Hilbert
space H with finite dimensional imaginary parts, The subspace G = GA +GB (where GA = (A−
A∗)H, GB = (B−B∗)H) is the non-Hermitian subspace of the pair (A,B), GA, GB are the non-
Hermitian subspaces of A and B correspondingly. Let the operators A and B be embedded in a
regular colligation (an every pair (A,B) of commuting nonselfadjoint operators on H with finite-
dimensional imaginary parts can be always embedded in a commutative regular colligation (see,
for example, [4]))

(1.1) X = (A,B;H,Φ̃,E;σA,σB,γ, γ̃)

where σA, σB, γ , γ̃ are bounded linear selfadjoint operators in another Hilbert space E , Φ̃ : H −→E
is bounded linear operator, satisfying the conditions

(1.2) (A−A∗)/i = Φ̃
∗
σAΦ̃, (B−B∗)/i = Φ̃

∗
σBΦ̃,

(1.3) σAΦB∗−σBΦA∗ = γΦ,

(1.4) σAΦ̃B−σBΦ̃A = γ̃Φ̃,

(1.5) γ̃ − γ = i(σAΦ̃Φ̃
∗
σB −σBΦ̃Φ̃

∗
σA).

If ΦH = E and kerσA ∩kerσB = {0}, the colligation is called a strict colligation. A colliga-
tion is said to be commutative if AB = BA. Strict commutative colligations are regular (see [6, 7]).
Here we consider the case of dimE <+∞.

To a given commutative regular colligation (1.1) there corresponds the following generalized
open system (introduced in [4]) from the form

(1.6)


i1

ε

∂

∂ t f +A f = Φ̃∗σAu,
i 1

δ

∂

∂x f +B f = Φ̃∗σBu,
v = u− iΦ̃ f ,

where ε , δ are complex constant, the vector functions u = u(x, t), v = v(x, t) with values in E and
f = f (x, t) with values in H are the collective input, the collective output, and the collective state
correspondingly.

For the commutative regular colligation X the equations (1.6) of open system are compatible
if and only if the input u = u(x, t) and the output v = v(x, t) satisfy the following partial differential
equations correspondingly (see Theorem 3.3, [4])

(1.7) σB

(
−i

1
ε

∂u
∂ t

)
−σA

(
−i

1
δ

∂u
∂x

)
+ γu = 0,

(1.8) σB

(
−i

1
ε

∂v
∂ t

)
−σA

(
−i

1
δ

∂v
∂x

)
+ γ̃v = 0.
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The equations (1.7), (1.8) are the matrix wave equations. To the generalized open system (1.6)
there correspond the more general collective motions of the form

(1.9) T (x, t) = ei(εtA+δxB), T ∗−1(x, t) = ei(εtA∗+δxB∗).

It is evident that the vector function (or so-called open field, following the terminology of M.S.
Livšic) f (x, t) = T (x, t)h (h ∈ H) satisfies the system (1.6) with identically zero input and an arbi-
trary initial state f (0,0) = h (h ∈ H).

The preliminary results, concerning the application of the connection between the soliton
theory and the commuting nonselfadjoint operator theory, are obtained in [4] in the case when one
of the operators belongs to the the larger class of nonselfadjoint nondissipative operators–couplings
of dissipative and antidissipative operators with absolutely continuous real spectra (introduced and
investigated by G.S. Borisova, K.P. kirchev in [2, 5]). These preliminary results allow to expand
the idea for solutions of the KdV equation (obtained by M.S. Livšic and Y. Avishai in [8] for the
dissipative operator B with zero limit lim

x→+∞
(eixB f ,eixB f ) = 0 ( f ∈ H)) in the case of the considered

larger class of nondissipative operators.
Let the operators A and B be commuting linear bounded nonselfadjoint operators in a sepa-

rable Hilbert space H. Let us suppose that A and B satisfy the conditions:
(I) the operators A and B have finite-dimensional imaginary parts (i.e. the so-called non-

hermitian subspaces GA = (A−A∗)H and GB = (B−B∗)H of the operators A and B are finite-
dimensional subspaces);

(II) the operator B is a coupling of dissipative and antidissipative operators with absolutely
continuous real spectra (and consequently, there exists lim

x→+∞
(eixBh,eixBh) ̸= 0 (h ∈ H), [5]).

Without loss of generality, we can assume that the operator B is the triangular model

(1.10)
B f (w) = α(w) f (w)− i

w∫
a′

f (ξ )Π(ξ )S∗Π∗(w)dξ+

+i
b′∫
w

f (ξ )Π(ξ )SΠ∗(w)dξ + i
w∫

a′
f (ξ )Π(ξ )LΠ∗(w)dξ ,

where a′ = −l, b′ = l, i.e. ∆ = [−l, l], H = L2(∆;Cp), f = ( f1, f2, . . . , fp) ∈ H = L2(∆;Cp),
L : Cm −→ Cm, detL ̸= 0, L∗ = L, L = J1 − J2 +S+S∗,

(1.11) J1 =

(
Ir 0
0 0

)
, J2 =

(
0 0
0 Im−r

)
, S =

(
0 0
Ŝ 0

)
,

r is the number of positive eigenvalues and m− r is the number of negative eigenvalues of the
matrix L, Π(w) is a measurable p×m (1 ≤ p ≤ m) matrix function on ∆, whose rows are linearly
independent at each point of a set of positive measure, the matrix function Π̃(w) = Π∗(w)Π(w)
satisfies the conditions tr Π̃(w) = 1, Π̃(w)J1 = J1Π̃(w), ||Π̃(w1)− Π̃(w2)|| ≤C|w1 −w2|α1 for all
w1,w2 ∈ ∆ for some constant C > 0, α1 is an appropriate constant with 0<α1 ≤ 1 (see [5]), (where
|| || is the norm in Cm) and the function α : ∆ −→ R satisfies the conditions:

(i) the function α(w) is continuous strictly increasing on ∆;
(ii) the inverse function σ(u) of α(w) is absolutely continuous on [a,b] (a = α(a′), b =

α(b′));
(iii) σ ′(u) is continuous and satisfies the relation |σ ′(u1)−σ ′(u2)| ≤C|u1−u2|α2 , (0<α2 ≤

1) for all u1, u2 ∈ [a,b] and for some constant C > 0.
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The imaginary part of the operator B from (1.10) satisfies the condition (B−B∗)/i = Φ∗LΦ,
where the operator Φ : H −→ H is defined by the equality

(1.12) Φ f (w) =
b′∫

a′

f (w)Π(w)dw.

The existence of the wave operators W±(B∗,B) = s− lim
x→±∞

eixB∗
e−ixB of the couple of oper-

ators (B,B∗) as strong limits has been established and their explicit form has been obtained in [5]
and [3], i.e.

(1.13) W±(B∗,B) = s− lim
x→±∞

eixB∗
e−ixB = S̃∗∓S̃∓.

The explicit form of the operators S̃∓ on the right hand side of the relation (1.13) for the operator
B with triangular model (1.10) has been obtained in [5] in the terms of the multiplicative integrals
and the finite dimensional analogue of the classical gamma function (introduced in [5]).

In [4] (Theorem 2.1) it has been obtained that if a bounded linear operator ρ : L2(∆;Cp)−→
L2(∆;Cp) commutes with the operator of multiplication with an independent variable in the space
L2(∆;Cp), then the operator M, defined in L2(∆;Cp) by the equality

(1.14) M =

∞∫
0

e−ixB∗
ρ

B−B∗

i
eixBdx

(as a strong limit), satisfies the relation

(1.15) B∗M−MB = ρ(B∗−B)

For the existence of the integral in (1.14) and the equality (1.15) we essentially use the existence
and the explicit form of the limit s− lim

x→+∞
e−ixB∗

eixB = S̃∗+S̃+, which follows from (1.13) and has

been obtained in [5].
Finally it has to be mentioned that for different appropriate choices of the complex constants

ε , δ and an appropriate relation between the operator A and the operator B of a coupling from the
form (1.10) tne applications for the nonlinear differential equations, mentined above, based on the
connection between the opertor theory and the soliton theory, are obtained in [4, 1].

2 The special case of the input and the output of the open system, corre-
sponding to the Schödinger equation
In this section we consider appropriate operators A, B and the corresponding generalized

open system with appropriate choice of the complex constants ε , δ , generating solutions of the
nonlinear Schrödinger equation in the special case of separated variables in the input, the internal
state and the output. We derive what kind of nonlinear differential equations are satisfied by the
components of the input and the output of the corresponding open system which are 2m vector
functions. The obtained equations are as the equations in [10].

Let the operators A, B be commuting linear bounded nonselfadjoint nondissipative operators
in a separable Hilbert space H,satisfying the conditions (I), (II). Let the operator B be a coupling
of dissipative and antidissipative operators with real absolutely continuous spectra. Without loss
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of generality we can assume that the coupling B is the triangular model (1.10) when ∆ = [−l, l],
H = L2(∆,Cp). Let the operators Π(w), Q(w), Π̃(w), L, Φ be stated as in Section 1.

Let the operators A = bB2, B be embedded in the commutative regular colligation X from
(1.1), i.e.

(2.1) X = (A = bB2,B;H = L2(∆;Cp),Φ̃,E = C2m;σA,σB,γ, γ̃)

where σA, σB, γ , γ̃ are stated as in Section 1. Let us consider the generalized open system, corre-
sponding to X (in the case when ε = i, δ = 1) from the form (1.6)

(2.2)


∂ f
∂ t +A f = Φ̃∗σAu
i∂ f

∂x +B f = Φ̃∗σBu
v = u− iΦ̃ f .

Then the collective motions (1.9) have the form

(2.3) T (x, t) = ei(itA+xB), T ∗−1(x, t) = ei(−itA∗+xB∗).

Now Theorem 3.3 in [4] shows that collective motions are compatible if and only if the input
and the output satisfy (when ε = i, δ = 1) the following partial differential equations (or so called
matrix wave equations) correspondingly

(2.4) −σB
∂u
∂ t

+ iσA
∂u
∂x

+ γu = 0,

(2.5) −σB
∂v
∂ t

+ iσA
∂v
∂x

+ γ̃v = 0.

Let us consider now the special case of separated variables in the input, the output and the state
when

(2.6) u(x, t) = e−λ tuλ (x), v(x, t) = e−λ tvλ (x), f (x, t) = e−λ t fλ (x).

Then the corresponding open system takes the form

(2.7)


−λ fλ (x)+A fλ (x) = Φ̃σAuλ (x)
id fλ (x)

dx +B fλ (x) = Φ̃σBuλ (x)
vλ (x) = uλ (x)− iΦ̃ fλ (x).

Consequently, fλ (x) = (A−λ I)−1Φ̃σAuλ (x) and

(2.8) vλ (x) = uλ (x)− iΦ̃(A−λ I)−1
Φ̃σAuλ (x) =WA(λ )uλ (x),

where WA(λ ) is the characteristic operator function of the operator A (λ does not belong to the
spectrum of the operator A, i.e. λ is a regular point of the characteristic operator function of
A). Then direct calculations (using the form and the conditions for the operators σA, σB, γ , Φ̃,
described in Section 1) show that the matrix γ̃ has the form

(2.9) γ̃ =

(
−ibL(π12 −π∗

12)L −ibLπ11L
ibLπ11L bL

)
,
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where we have used the block representation of the selfadjoint matrix

(2.10) Φ̃Φ̃
∗h = h

(
π11 π12
π∗

12 π22

)
,

where the matrices π11, π22 satisfy π∗
11 = π11, π∗

22 = π22 and they do not depend on x.
Using the denotations

(2.11) uλ (x) = (u1(x),u2(x)), vλ (x) = (v1(x),v2(x)),

the compatibility conditions (2.4) and (2.5) for uλ (x) and vλ (x) and straightforward calculations
we obtain the next theorem.

Theorem 2.1. The input u(x, t) = e−λ tuλ (x) = (e−λ tu1(x),e−λ tu2(x)) and the output v(x, t) =
e−λ tvλ (x) = (e−λ tv1(x),e−λ tv2(x)) of the open system (2.7) satisfy the compatibility conditions

σA
duλ

dx − i(λσB + γ)uλ = 0
σA

dvλ

dx − i(λσB + γ̃)vλ = 0

and the characteristic operator function WA(λ ) = I − iΦ̃(A−λ I)−1Φ̃σA of the operator A = bB2

maps the input u(x, t), satisfying the equations

−d2u1
dx2 = λ

b u1

−d2u2
dx2 = λ

b u2

to the output v(x, t) =WA(λ )u(x, t) which components v1(x), v2(x) are solutions of the equations

−d2v1
dx2 + v1((Lπ11)

2 + iL(π12 −π∗
12)) =

λ

b v1

−d2v2
dx2 + v2((Lπ11)

2 + iL(π12 −π∗
12)) =

λ

b v2

(when the operator Φ̃ satisfies the condition π11L(π12 − π∗
12) = (π12 − π∗

12)Lπ11, and vλ (x) =
WA(λ )uλ (x)).

3 The case when the operator A and B depend on the spatial variable x and
the Schödinger equation
The results, obtained in the previous Section 2, can be expanded in the case when the opera-

tors A and B depend on the spatial variable x, i.e. for the special case of separated variables in the
input, the state, and the output of the generalized open system, connected with obtaining solutions
of the nonlinear Schrödinger equation when the operators A and B depend on the spatial variable x
and they are prezented in [1]. As in Section 2 there are derived what kind of differential equations
are satisfied by the components of the input and the output of the corresponding generalized open
system–Sturm-Liouville differential equations with matrix function potentials, which depend on
the matrix function Φ̃(x)Φ̃∗(x) (defined bellow).

Let us consider now regular colligations (or vessels) which depend on the spatial variable
x. This is the case when the operators A, B, Φ̃ depend on the spatial variable x, i.e. the matrix
function Π(w) depends also on the variable x, i.e. Π = Π(w,x).
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Using the results of M.S. Livšic in the article [9] (Section 3.5) it follows that the commuting
operators A(x), B(x) are embedded in the strict colligation

X = (A(x),B(x);H,Φ̃(x),E = C2m;σA,σB,ψ(x), ψ̃(x)),

(where the operator functions Φ̃(x), ψ(x), ψ̃(x) are differentiable). Let us consider a generalized
open system with the form (analogous to the case when operators A, B do not depend on the
variables x and t)

(3.1)


i1

ε

∂ f (x,t)
∂ t +A(x) f (x, t) = Φ̃∗(x)σAu(x, t)

i 1
δ

∂ f (x,t)
∂x +B(x) f (x, t) = Φ̃∗(x)σBu(x, t)

v(x, t) = u(x, t)− iΦ̃(x) f (x, t)

(t0 ≤ t ≤ t1, x0 ≤ x ≤ x1, ε,δ ∈ C). The colligation conditions now have the form

(3.2) (A(x)−A∗(x))/i = Φ̃
∗(x)σAΦ̃(x), (B(x)−B∗(x))/i = Φ̃

∗(x)σBΦ̃(x),

(3.3)
1

iδ
σA

dΦ̃(x)
dx

+σAΦ̃(x)B∗(x)−σBΦ̃(x)A∗(x) = ψ(x)Φ̃(x),

(3.4)
1
iδ

σA
dΦ̃(x)

dx
+σAΦ̃(x)B(x)−σBΦ̃(x)A(x) = ψ̃(x)Φ̃(x),

(3.5) ψ̃(x) = ψ(x)+ i(σAΦ̃(x)Φ̃∗(x)σB −σBΦ̃(x)Φ̃∗(x)σA).

(M.S. Livšic has considered in [9] (Section 3.5) an open system in the case when ε = δ = 1).
Now the results of M.S. Livšic in [9] imply that

(3.6)
i
δ

dA(x)
dx

f = A(x)B(x) f −B(x)A(x) f .

In [1] the next theorem, concerning the matrix wave equations in this case, is proved.

Theorem 3.1. The input u(x, t) and the output v(x, t) of the open system (3.1) with A(x)B(x) =
B(x)A(x) satisfy the strong compatibility conditions (or matrix wave equations)

(3.7) σB

(
−i

1
ε

∂u
∂ t

(x, t)
)
−σA

(
−i

1
δ

∂u
∂x

(x, t)
)
+ψ(x)u(x, t) = 0,

(3.8) σB

(
−i

1
ε

∂v
∂ t

(x, t)
)
−σA

(
−i

1
δ

∂v
∂x

(x, t)
)
+ ψ̃(x)v(x, t) = 0.
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Let us consider the operator B(x), presented as a coupling of dissipative and antidissipative
operators with real absolutely continuous spectra. Without loss of generality we can assume that
the operator B(x) is the triangular model (1.10) in the Hilbert space H = L2(∆;Cp) where ∆ =

[−l, l]. Let the operators Π(w,x), Q(w,x), Π̃(w,x), L, Φ(x) be like in Section 2, but depending
on the other variable x (x0 ≤ x ≤ x1). Let the operator B(x) satisfy the condition B∗ = −UBU∗

(U : H −→ H, U∗U =UU∗ = I).
Let the operators A(x) = bB2(x) (b ∈ R) and B(x) be embedded in the colligation

X = (A(x) = bB2(x),B(x);H = L2(∆;Cp),Φ̃,E = C2m;σA,σB,ψ(x), ψ̃(x)),

where σA, σB, Φ̃ (Φ̃ = Φ̃(x)) are defined by the equalities

σA =

(
0 bL

bL 0

)
, σB =

(
L 0
0 0

)
, γ =

(
0 0
0 bL

)
, Φ̃ = (Φ ΦB∗).

Let us consider the case of generalized open system (3.1) when ε = i, δ = 1

(3.9)


∂ f (x,t)

∂ t +A(x) f (x, t) = Φ̃∗(x)σAu(x, t)
i∂ f (x,t)

∂x +B(x) f (x, t) = Φ̃∗(x)σBu(x, t)
v(x, t) = u(x, t)− iΦ̃(x) f (x, t)

(t0 ≤ t ≤ t1, x0 ≤ x ≤ x1). Then the corresponding colligation conditions are as (3.2)—(3.5) (with
δ = 1).

Next we determine the form of the matrix functions ψ(x) and ψ̃(x). i.e. we can consider
ψ(x) as a matrix function from the form ψ(x) = σ1(x)+ γ . Let us present ψ(x) in the form

(3.10) ψ(x) =
(

bLψ11(x)L ibLψ12(x)L
−ibLψ∗

12(x)L bL

)
=

(
ψ̂11 ψ̂12
ψ̂∗

12 bL

)
,

where ψ∗
11 = ψ11. Now using the block representation of the matrix function Φ̃(x)Φ̃(x)∗

(3.11) Φ̃(x)Φ̃∗(x) =
(

π11(x) π12(x)
π∗

12(x) π22(x)

)
(π∗

11(x) = π11(x), π∗
22(x) = π22(x)), the form of the matrices σA, σB we obtain

(3.12)

ψ̃(x) = ψ(x)+ i
(
−
(

L 0
0 0

)(
π11(x) π12(x)
π∗

12(x) π22(x)

)(
0 bL

bL 0

)
+

+

(
0 bL

bL 0

)(
π11(x) π12(x)
π∗

12(x) π22(x)

)(
L 0
0 0

))
=

= ψ − i
(

bL(π12 −π∗
12)L bLπ11L

−bLπ11L 0

)
=

=

(
ψ̂11 − ibL(π12 −π∗

12)L ψ̂12 − ibLπ11L
ψ̂∗

12 + ibLπ11L ψ̂22

)
=

=

(
bLψ̃11(x)L ibLψ̃12(x)L

−ibLψ̃∗
12(x)L bL

)
,

where ψ̃∗
11(x) = ψ̃11(x), ψ̃12(x) are matrices, which depend on x.
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Theorem 3.2. The input u(x, t)= e−λ tuλ (x)= e−λ t(u1(x),u2(x)) and the output v(x, t)= e−λ tvλ (x)=
e−λ t(v1(x),v2(x)) of the open system (3.9) satisfy the compatibility conditions

(3.13)
duλ (x)

dx − iσ−1
A (λσB +ψ(x))uλ (x) = 0,

dvλ (x)
dx − iσ−1

A (λσB + ψ̃(x))vλ (x) = 0

and the characteristic operator function WA(λ ) = I − iΦ̃(A−λ I)−1Φ̃∗σA maps the input uλ (x) =
(u1(x),u2(x)), satisfying the Sturm-Liouville equations

−d2u1

dx2 +u1((Lψ12)
2 −Lψ11 −L

dψ12

dx
) =

λ

b
u1,

−d2u2

dx2 +u2((Lψ12)
2 −Lψ11 +L

dψ12

dx
) =

λ

b
u2

to the output vλ (x) = (v1(x),v2(x)) = WA(λ )uλ , which are solutions of the following Sturm-
Liouville equations

−d2v1

dx2 + v1((Lψ̃12)
2 −Lψ̃11 −L

dψ̃12

dx
) =

λ

b
v1,

−d2v2

dx2 + v2((Lψ̃12)
2 −Lψ̃11 +L

dψ̃12

dx
) =

λ

b
v2

in the case when the operator functions Φ̃(x), ψ(x), ψ̃(x) satisfy the conditions

ψ12 = ψ
∗
12, −ψ12Lψ11 +ψ11Lψ

∗
12 +

dψ11

dx
= 0,

ψ̃12 = ψ̃
∗
12, −ψ̃12Lψ̃11 + ψ̃11Lψ̃

∗
12 +

dψ̃11

dx
= 0

(for x ∈ [x0,x1]).

In [10] realizing solutions of the Korteveg-de Vries equation by generating the Korteveg-de
Vries vessel (constructing the Sturm-Liouville operator with analytic potentials) is presented, using
another approach. This idea has been applied for obtaining solutions of evolutionary nonlinear
Schrödinger equation.

Finally, it is worth to mention that the presented approach in this paper can be applied to
other nonlinear differential equations, using an appropriate choice of the operators, the complex
constants in the generalized open systems, an appropriate dimension of the additional space E in
the colligation. For example, in the paper [1] (Section 8, Section 9.) G.S. Borisova has obtained
results about the input and the output of the open system and other differential equation – the
Korteweg-de Vries equation.
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