
MATTEX 2024,
CONFERENCE PROCEEDINGS, v. 1, pp. 19 – 30

SECTION MATHEMATICS AND
NATURAL SCIENCES

FOCAL CURVES OF CLOSED SADDLE CURVES*

CVETELINA L. DINKOVA, RADOSTINA P. ENCHEVA

ABSTRACT: We consider closed space curves on the hyperbolic paraboloid (saddle), generated
by three classes of well known plane curves: the epicycloid, the hypocycloid and the curves that are the
orthogonal projections of a toroidal helix. The focal curves of the considered space saddle curves were
investigated.

KEYWORDS: Hyperbolic paraboloid (Saddle), Saddle curves, Closed curves, Focal curves,
Generalized focal curves, Frenet-Seret frame, Curvature, Torsion, Toroidal helix, Epicycloid, Hypocy-
cloid

DOI: https://doi.org/10.46687/CXQL7965

1 Introduction
In geometry and topology, a closed curve is a connected, continuous curve that starts and

ends at the same point. A simple closed curve is a closed curve that doesn’t intersect itself. The
closed curves have a variety of forms and shapes, and they are essential in many branches of science
and mathematics, such as engineering and physics, as well as computer graphics. A circle is among
the simplest forms of a simple closed curve. Other closed curves are cardioids, epicycloids, and
hypocycloids.

We continue the research from our earlier work [3] in this paper. Firstly, we establish a way to
take a given plane curve and use it to create a new space curve that lies on a hyperbolic paraboloid
(saddle). We will call those curves saddle curves. The saddle surfaces and the curves laying on
them have many applications in architecture design, roof construction, and daily life. Next, we
apply this method to the closed planar curves mentioned above. Furthermore, we also examine
the orthogonal projection of a known space curve called a toroidal helix onto the Euclidean plane.
The focal curves of the generated saddle space curve, which lies on a hyperbolic paraboloid, are
then constructed. In the end, we obtain a generalized focal curve of a closed plane curve, which
is completely distinct from its evolute (a focal curve). Differential-geometric invariants such as
Euclidean curvatures, shape curvatures, and focal curvatures play an essential role in the curve
examination. In the text that follows, we find some relations between the differential-geometric
invariant of the considered curves.

2 Preliminaries
The basic concepts of the classical differential geometry of curves and surfaces in two and

three dimensional Euclidean space are introduced in this section. More details can be found in
the books "Modern Differential Geometry of Curves and Surfaces" (see [9]) and "Differential
Geometry of Curves and Surfaces" (see [4]).

Definition 2.1. [4, p.18] A parameterized differentiable curve is a differentiable map α : I → E3

of an open interval I ⊆ R of the real line R into E3.

The word "differentiable" in this definition means that α is a correspondence which maps
each t ∈ I into a point α(t) = (x(t),y(t),z(t)) ∈ E3, in such a way that the functions x(t),y(t),z(t)
are differentiable. The variable t is called a parameter of the curve.
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Definition 2.2. [4, p.22] A parameterized differentiable curve α : I → E3 is said to be regular if
α̇(t) = dα(t)

dt ̸= 0 for all t ∈ I.

We use the symbols α̇ =
dα(t)

dt
, α̈ =

dα̇(t)
dt

and etc. for a differentiation about an arbitrary

parameter t. The scalar product of two vector functions x(t) = (x1(t),x2(t),x3(t)) and y(t) =
(y1(t),y2(t),y3(t)) is given by ⟨x(t),y(t)⟩ = x1(t)y1(t)+ x2(t)y2(t)+ x3(t)y3(t). The norm of the

vector function x(t) is given by ∥x(t)∥=
√

⟨x,x⟩=
√

x2
1(t)+ x2

2(t)+ x2
3(t) for t ∈ R.

For given t0 ∈ I, the arc-length of a regular parameterized curve α : I →E3 from the point t0 is
given by the equality s(t) =

∫ t
t0 ∥α̇(t)∥dt, where ∥α̇(t)∥=

√
ẋ2(t)+ ẏ2(t)+ ż2(t). Since α̇(t) ̸= 0,

the arc-length function s = s(t) is a differentiable function of t and ds/dt = ∥α̇(t)∥.
A map α : I →E3 is called a curve of class Ck (Ck−curve) if each of the coordinate functions

in the expression α(t) = (x(t),y(t),z(t)) has continuous derivatives up to order k. We say that α

is of class C0 if it is simply continuous. If the map α is one-to-one, then the curve α is said to be
simple. Our investigations are restricted to regular curves with linearly independent derivatives of
order from one to n in En, n = 2,3. We will call that curves Frenet curves.

The image of any parameterized curve in the Euclidean plane E2 ≡ O⃗e1⃗e2 under an orientation-
preserving affine map in E2 is also a parameterized curve in E2. Now, we will discuss the
differential-geometric invariants of Frenet plane curves with respect to the group of orientation-
preserving rigid motions.

A regular parameterized curve α : [a,b]→E2 is called a closed plane curve if α and all of its
derivatives coincide at a and b, that is α(a) = α(b), α̇(a) = α̇(b), α̈(a) = α̈(b),

...
α (a) =

...
α (b), . . .

The curve α is simple if it has no further self-intersections, that is, if t1, t2 ∈ [a,b], t1 ̸= t2,
then α(t1) ̸= α(t2).

Let us consider a Frenet plane curve α : I →E2 of class C3 that is defined on the open interval
I ⊆ R by

(1) α(t) = (x(t),y(t),0).

Definition 2.3. [9, p.3] A complex structure J is a linear map J : E2 → E2 given by J(p1, p2) =
(−p2, p1). Geometrically, J is a rotation by π/2 in a counterclockwise direction.

Definition 2.4. [9, p.11] Let α : I → E2 be a Frenet plane curve. The signed curvature K of α is

given by the formula K(t) =
⟨α̈(t),Jα̇(t)⟩

∥α̇(t)∥3 . The function R =
1
K

is called a radius of curvature of

α.

Remark 2.1. The signed curvature K defined by the equation in Definition 2.4 above is an invariant
under orientation-preserving rigid motions in E2.

The Frenet-Seret system of a Frenet space curve γ consists of vectors and scalar invariants:

T =
γ̇

∥γ̇∥
, N =

(γ̇ × γ̈)× γ̇

∥(γ̇ × γ̈)× γ̇∥
, B =

γ̇ × γ̈

∥γ̇ × γ̈∥
, κ =

∥γ̇ × γ̈∥
∥γ̇∥3 , τ =

γ̇ γ̈
...
γ

∥γ̇ × γ̈∥2 ,

where the vector invariants T,N,B are known as a tangent, a principal and a binormal unit vector
field of γ, respectively, whereas the scalar invariants κ and τ are called a curvature and a torsion
of γ, respectively, or Euclidean curvatures.
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Definition 2.5. [9, p.241] A focal curve of a Frenet space curve γ : I → E3 of class C3 is the curve
given by

(2) Cγ(t) = γ(t)+ c1(t)N(t)+ c2(t)B(t),

where N is a principal unit normal vector field of γ , B is a binormal unit vector field of γ. The
coefficients c1(t) and c2(t) are smooth functions called focal curvatures of γ , and given by

(3) c1(t) =
1

κ(t)
, c2(t) =−

d
dtκ(t)

∥ dγ(t)
dt ∥ κ(t)2τ(t)

=
dc1(t)

dt

∥ dγ(t)
dt ∥ τ(t)

,

where κ(t) and τ(t) are the Euclidean curvatures of γ .

In other words, the focal curve of a Frenet curve γ in the Euclidean space E3 consists of the
centres of its osculating spheres.

Remark 2.2. The functions c1(t) and c2(t) are well defined because κ(t) and τ(t) are non-zero
functions.

Definition 2.6. [9, p.438] Let S ⊂ E3 be a surface. Then S is a generalized cylinder over a curve
α : I → E3 if S can be parameterized as S(u,v) = α(u)+ v.⃗q, where q⃗ ∈ E3 is a fixed vector.

We consider a case of a right generalized cylinder over the plane curve α , when its rulings
are perpendicular to the generating plane curve. That means, the fixed vector is a unit vector
e⃗3 = (0,0,1) ∥ Oz and the parameter v is replaced by the function f (v) ∈ R, f (v) ∈C3. Then the
parametrisation of a right generalized cylinder is S1(u,v) = α(u)+ f (v)⃗e3.

The term "saddle" is frequently used to describe a hyperbolic paraboloid for rather obvious
reasons. The name stems from the fact that its vertical cross sections are parabolas, while the
horizontal cross sections are hyperbolas. The Cartesian equation of this surface is z =−x2 + y2.

3 Previous results
Theorem 3.1. [8] Let α(t) = (x(t),y(t),0), t ∈ I ⊂ R be a Frenet plane curve of class C3 with a
nonzero signed curvature, and let f (t) ∈C3 be a real-valued function. Suppose that e⃗3 is the unit
vector on Oz-axis and

γ(t) = α(t)+ f (t )⃗e3, t ∈ I

is a parameterized space curve. Then, γ(t) is a Frenet curve whose curvature and torsion are given
by

(4) κ =

√〈
α̈,Jα̇

〉2
+
〈

f̈ α̇ − ḟ α̈, f̈ α̇ − ḟ α̈
〉

(√〈
α̇, α̇

〉
+ ḟ 2

)3

(5) τ =

...
f
〈
α̈,Jα̇

〉
+ f̈

〈
− Jα̇,

...
α
〉
+ ḟ

〈
Jα̈,

...
α
〉〈

α̈,Jα̇
〉2

+
〈

f̈ α̇ − ḟ α̈, f̈ α̇ − ḟ α̈
〉

The following statement provides us with relations between the Frenet-Seret frame of γ and
the signed curvature K of α as well as the derivatives of the arc-length function of α, parameterized
about an arbitrary parameter t.
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Theorem 3.2. [3] Let α = α(t), t ∈ I ⊆ R be a regular C3-plane curve in E2 and K ̸= 0 is the
Euclidean signed curvature of α . Let γ(t) = α(t)+ f (t).⃗e3, t ∈ I ⊆ R, f (t) ∈ C2 be the corre-
sponding cylindrical curve over the right generalized cylinder with a base curve α. If T,N,B are
vector invariants of γ , then they can be expressed by the derivatives of α , the scalar function f and
the unit vector e⃗3 with the following equations

(6) T =
ṡ+ ḟ e⃗3√

ṡ2 + ḟ 2

(7) N =
(ṡ2 + ḟ 2)α̈ − 1

2
d
dt (ṡ

2 + ḟ 2)α̇ +
(

f̈ ṡ2 − ḟ d
dt

(
ṡ2

2

))
e⃗3√

ṡ2 + ḟ 2
√

ṡ6K2 +∥ f̈ α̇ − ḟ α̈∥2

(8) B =
−J( f̈ α̇ − ḟ α̈)+ ṡ6K2⃗e3√

ṡ6K2 +∥ f̈ α̇ − ḟ α̈∥2

where ṡ is the derivative of the arc-length function s = s(t) of α with respect to an arbitrary
parameter t.

The next statement gives us relations between the focal curvatures of γ and the signed cur-
vature of α, parameterized about an arbitrary parameter t.

Theorem 3.3. [3] Let α = α(t), t ∈ I ⊆R be a regular C3-plane curve in E2 and K ̸= 0 is the Eu-
clidean signed curvature of α . Let γ(t) =α(t)+ f (t).⃗e3, t ∈ I ⊆R, f (t)∈C2 be the corresponding
cylindrical curve over the right generalized cylinder with a base curve α. If c1 and c2 are the focal
curvatures of γ , then

(9) c1(t) =

√
ṡ2 + ḟ 2√

ṡ6K2 +∥ f̈ α̇ − ḟ α̈∥2
,

(10) c2(t) =
3(ṡ6K2 +∥ f̈ α̇ − ḟ α̈∥2) d

dt (ṡ
2 + ḟ 2)− (ṡ2 + ḟ 2) d

dt (ṡ
6K2 +∥ f̈ α̇ − ḟ α̈∥2)

2
√

ṡ6K2 +∥ f̈ α̇ − ḟ α̈∥2 (
...
f ṡ3K −⟨J( f̈ α̇ − ḟ α̈),

...
α ⟩)

,

where ṡ is the derivative of the arc-length function s = s(t) of α with respect to an arbitrary
parameter t.

Theorem 3.4. [3] Let α = α(t), t ∈ I ⊆ R be a regular C3-plane curve in E2 and K ̸= 0 is the
Euclidean signed curvature of α . Let γ(t) =α(t)+ f (t).⃗e3, t ∈ I ⊆R, f (t)∈C3 be the correspond-
ing cylindrical curve over the right generalized cylinder with base curve α and c1,c2 are the focal
curvatures of γ defined by equations (9) and (10). Then the focal curve of γ has vector-parametric
representation Cγ(t) = β (t)+ f̃ (t).e⃗3,

(11) β (t) = α(t)+
c1
(
(ṡ2 + ḟ 2)α̈ − 1

2
d
dt (ṡ

2 + ḟ 2)α̇
)
− c2

√
ṡ2 + ḟ 2 J( f̈ α̇ − ḟ α̈)√

ṡ2 + ḟ 2
√

ṡ6K2 +∥ f̈ α̇ − ḟ α̈∥2
,

(12) f̃ (t) = f (t)+
c1

(
f̈ ṡ2 − ḟ d

dt

(
ṡ2

2

))
+ c2

√
ṡ2 + ḟ 2 ṡ3K√

ṡ2 + ḟ 2
√

ṡ6K2 +∥ f̈ α̇ − ḟ α̈∥2
,

where β is the generalized focal curve of α , ṡ is the derivative of the arc-length function s = s(t)
of α with respect to an arbitrary parameter t.
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4 Main results
Let us consider a hyperbolic paraboloid S : z =−x2 + y2 with a parametric equation

(13) S(u,v) = (u,v,v2 −u2), where u,v ∈U ⊆ R2.

Theorem 4.1. Let α = α(t), t ∈ I ⊆ R be a regular C3-plane curve in E2 and K ̸= 0 is the Eu-
clidean signed curvature of α . Let γ(t) = (x(t),y(t),−x2(t)+y2(t)), t ∈ I ⊆R be the correspond-
ing saddle space curve over the hyperbolic paraboloid S. If T,N,B are vector invariants of γ , then
they can be expressed by the derivatives of α , α∗ and the unit vector e⃗3 via the following equations

(14) T =
ṡ+2⟨α∗, α̇ ⟩⃗e3√

ṡ2 +4⟨α∗, α̇⟩2

(15) N =
(ṡ2 +4⟨α∗, α̇⟩2)α̈ − 1

2
d
dt (ṡ

2 +4⟨α∗, α̇⟩2)α̇ +
(

d⟨α∗,α̇⟩
dt ṡ2 −⟨α∗, α̇⟩dṡ2

dt

)
e⃗3√

ṡ2 +4⟨α∗, α̇⟩2
√

ṡ6K2 +∥A∥2

(16) B =
−J(A)+ ṡ6K2⃗e3√

ṡ6K2 +∥A∥2

where A= 2[⟨α̇∗, α̇⟩+⟨α∗, α̈⟩]α̇−2⟨α∗, α̇⟩α̈ , ṡ is the derivative of the arc-length function s= s(t)
of α with respect to an arbitrary parameter t and α∗ is the image of the plane curve α about a
symmetry with respect to the ordinate axis Oy.

Proof: The proof immediately follows from Theorem 3.2 and the condition f (t) =−x2(t)+
y2(t). In more details, the vector function γ(t) = (x(t),y(t),−x2(t)+ y2(t)) is of class C2 when its
coordinate functions x(t),y(t) are of class C2. The fact that the functions x(t),y(t) are continuously
differentiable up to order 2 immediately follows from the condition that α is a regular C3-plane
curve in E2. It is easy to see that if α∗(t) = (−x(t),y(t)) is the image of the plane curve α(t) =
(x(t),y(t)) about a symmetry with respect to the ordinate axis Oy. Then the scalar representation
of the function f (t) = −x2(t)+ y2(t) can be written in the form f (t) = ⟨α∗(t),α(t)⟩. Recall that
⟨., .⟩ is a notion of the scalar product of two vector functions. Applying differentiations about an
arbitrary parameter t we get to the equalities ḟ (t) = 2⟨α∗, α̇⟩, f̈ (t) = 2(⟨α∗, α̈⟩+ ⟨α̇∗, α̇⟩), and
A = f̈ α̇ − ḟ α̈ = 2[⟨α̇∗, α̇⟩+ ⟨α∗, α̈⟩]α̇ −2⟨α∗, α̇⟩α̈ . When we substitute them into equations (6),
(7) and (8) we obtain equations (14), (15) and (16). □

In the next statement the focal curvatures of γ can be expressed by the signed curvature of α ,
the curve α, parameterized about an arbitrary parameter t, α∗ that is the image of the plane curve
α about a symmetry with respect to the ordinate axis Oy and their derivatives.

Theorem 4.2. Let α = α(t), t ∈ I ⊆ R be a regular C3-plane curve in E2 and K ̸= 0 is the Eu-
clidean signed curvature of α . Let γ(t) = (x(t),y(t),−x2(t)+y2(t)), t ∈ I ⊆R be the correspond-
ing saddle space curve over the hyperbolic paraboloid S. If c1 and c2 are the focal curvatures of
γ , then

(17) c1(t) =

√
ṡ2 +4⟨α∗, α̇⟩2√
ṡ6K2 +∥A∥2

,
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(18) c2(t) =
3(ṡ6K2 +∥A∥2) d

dt (ṡ
2 +4⟨α∗, α̇⟩2)− (ṡ2 +4⟨α∗, α̇⟩2) d

dt (ṡ
6K2 +∥A∥2)

2
√

ṡ6K2 +∥A∥2 [(3⟨α̇∗, α̈⟩+ ⟨α∗,
...
α ⟩)ṡ3K −⟨J(A), ...

α ⟩]
,

where A= 2[⟨α̇∗, α̇⟩+⟨α∗, α̈⟩]α̇−2⟨α∗, α̇⟩α̈ , ṡ is the derivative of the arc-length function s= s(t)
of α with respect to an arbitrary parameter t and α∗ is the image of the plane curve α about a
symmetry with respect to the ordinate axis Oy.

Proof: The vector function γ(t) = (x(t),y(t),−x2(t)+ y2(t)) is of class C3 when its coor-
dinate functions x(t),y(t) are of class C3, which immediately follows from the condition that α

is a regular C3-plane curve in E2. Substituting derivatives ḟ (t) = 2⟨α∗, α̇⟩, f̈ (t) = 2(⟨α∗, α̈⟩+
⟨α̇∗, α̇⟩),

...
f (t) = 2(⟨α∗,

...
α ⟩+3⟨α̇∗, α̈⟩) and A = f̈ α̇ − ḟ α̈ = 2[⟨α̇∗, α̇⟩+ ⟨α∗, α̈⟩]α̇ −2⟨α∗, α̇⟩α̈

into the equations (9) and (10) in Theorem 3.3 we get to the equations (17) and (18) whence the
proof of the theorem is completed. □

According to the next theorem, the focal curve Cγ(t) of a saddle space curve γ can be ex-
pressed via the signed curvature of α, the curve α, the image α∗ = SOy(α) of the plane curve α

about a symmetry with respect to the ordinate axis Oy and their derivatives.

Theorem 4.3. Let α = α(t), t ∈ I ⊆ R be a regular C3-plane curve in E2 and K ̸= 0 is the Eu-
clidean signed curvature of α . Let γ(t) = (x(t),y(t),−x2(t)+y2(t)), t ∈ I ⊆R be the correspond-
ing saddle space curve over the hyperbolic paraboloid S and c1,c2 are the focal curvatures of γ

defined by equations (17) and (18). Then the focal curve of γ has a vector-parametric representa-
tion Cγ(t) = β (t)+F(t).e⃗3,

(19) β (t) = α(t)+
c1
(
(ṡ2 +4⟨α∗, α̇⟩2)α̈ − 1

2
d
dt (ṡ

2 +4⟨α∗, α̇⟩2)α̇
)
− c2

√
ṡ2 +4⟨α∗, α̇⟩2 J(A)√

ṡ2 +4⟨α∗, α̇⟩2
√

ṡ6K2 +∥A∥2
,

(20) F(t) = ⟨α∗,α⟩+
c1

(
2[⟨α̇∗, α̇⟩+ ⟨α∗, α̈⟩]ṡ2 −⟨α∗, α̇⟩dṡ2

dt

)
+ c2

√
ṡ2 +4⟨α∗, α̇⟩2 ṡ3K√

ṡ2 +4⟨α∗, α̇⟩2
√

ṡ6K2 +∥A∥2
,

where β is the generalized focal curve of α , A = 2[⟨α̇∗, α̇⟩+ ⟨α∗, α̈⟩]α̇ − 2⟨α∗, α̇⟩α̈ , ṡ is the
derivative of the arc-length function s = s(t) of α with respect to an arbitrary parameter t.

Proof: The focal curve of γ has a vector-parametric representation Cγ(t) = β (t)+ f̃ (t).e⃗3,
according to Theorem 3.4. The scalar function f̃ (t) is given by equation (12), and the generalised
focal curve β of α is given by equation (11). Then substituting the derivatives ḟ (t) = 2⟨α∗, α̇⟩,
f̈ (t) = 2(⟨α∗, α̈⟩+⟨α̇∗, α̇⟩) and A = f̈ α̇ − ḟ α̈ = 2[⟨α̇∗, α̇⟩+⟨α∗, α̈⟩]α̇ −2⟨α∗, α̇⟩α̈ into the equa-
tions (11) and (12) we get the proof of the theorem. □

5 Examples of closed saddle curves in the Euclidean space E3

5.1 Saddle helixes
A curve that is the orthogonal projection of a toroidal helix (a helix wrapped into a torus) onto

the Euclidean plane has a parametric equation α(t) = (cos(t)(a+bcos(nt)),sin(t)(a+bcos(nt))),
t ∈ R. The images of the orthogonal projection of a toroidal helix α (in orange) are presented
on Figure 1 for a = 1, b = 4, n = 8; a = 4, b = 1, n = 8 and a = b = n = 3. Then the correspond-
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Figure 2

ing space curve on the hyperbolic paraboloid that we will call a saddle helix has a parametric
representation

γ(t) = (cos(t)(a+bcos(nt)),sin(t)(a+bcos(nt)),−cos(2t)(a+bcos(nt))2).

The images of the saddle helixes γ (in blue) are presented on Figure 2 for a = 1, b = 4, n = 8;
a = 4, b = 1, n = 8 and a = b = n = 3.

Figure 3 displays the images of a saddle helix γ (in blue) over a saddle and its corresponding
focal curve Cγ (in red) for a = 4,b = 1,n = 8.

The image of the orthogonal projection of a toroidal helix α (in orange) and its corre-
sponding generalized focal curve β (in green) are displayed on Figure 4 for a = 4,b = 1,n = 8.

5.2 Saddle epicycloids
The trajectory of a fixed point on a circle, known as an epicycle, which rolls around a given

circle without slipping, is a planar curve named an epicycloid. The epicycloid and its evolute
(focal curve) are similar curves. Now let us examine the epicycloid provided by

α(t) =
(
(r+R)cos

(rt
R

)
− r cos

(
t(r+R)

R

)
,(r+R)sin

(rt
R

)
− r sin

(
t(r+R)

R

)
,0
)
,
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Figure 3
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for t ∈ [0,2kπ], k = 1,2, . . . , where R is the radius of the bigger circle centered at the origin around
which the smaller circle with radius r rolls.

The ratio r
R = m determines how the epicycloid looks.

5.2.1 A saddle cardioid and its focal curve

For R = r the epicycloid α is called a cardioid and its corresponding curve γ is a saddle
cardioid with a parametric equation

γ(t) =
(
−r(cos(2t)−2cos(t)),2r sin(t)− r sin(2t),−r2(4cos(2t)−4cos(3t)+ cos(4t))

)
,

for t ∈ [0,2π]. The images of a saddle cardioid γ (in blue) over a saddle and its corresponding
focal curve Cγ (in red) are depicted on Figure 5 for R = r = 1. In this case γ is a non-planar curve
when t ̸= 0,2π . The point γ(0) = γ(2π) is a cusp of γ .

The images of a cardioid α (in orange) and its corresponding generalized focal curve β (in
green) are displayed on Figure 6 for R = r = 1.
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Figure 5
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5.2.2 A saddle nephroid and its focal curve

For R = 2r the epicycloid α is called a nephroid and its corresponding curve γ is a saddle
nephroid with a parametric equation

(21) γ(t) =
(
−r

(
cos

(
3t
2

)
−3cos

( t
2

))
,4r sin3

( t
2

)
,−r2(9cos(t)−6cos(2t)+ cos(3t))

)
for t ∈ [0,4π]. For R = 2r, r = 1, Figure 7 shows the pictures of a saddle nephroid γ (in blue) over
a saddle and its corresponding focal curve Cγ (in red).

The images of a nephroid α (in orange) and its corresponding generalized focal curve β

(in green) are depicted on Figure 8 for R = 2r, r = 1.

5.3 Saddle hypocycloids
A plane curve traced by a fixed point on a circle rolling internally on a given circle is called a

hypocycloid. The hypocycloid and its evolute (focal curve) are similar curves. Now let us consider
the hypocycloid given by

α(t) =
(

r cos
(

t(R− r)
R

)
+(R− r)cos

(rt
R

)
,(R− r)sin

(rt
R

)
− r sin

(
t(R− r)

R

)
,0
)
,
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Figure 7
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for t ∈ [0,2kπ], k = 1,2, . . ., where R is the radius of the bigger circle centered at the origin on
which the smaller circle with radius r rolls internally.

The shape of the hypocycloids depends on the ratio r
R = m.

5.3.1 A saddle deltoid and its focal curve

For 2R = 3r the hypocycloid α is called a deltoid and its corresponding curve γ is a saddle
deltoid with a parametric equation

γ(t) =
(

1
2

r
(

2cos
( t

3

)
+ cos

(
2t
3

))
,−4r sin3

( t
6

)
cos

( t
6

)
,

−1
4

r2
(

4
(

cos
( t

3

)
+ cos

(
2t
3

))
+ cos

(
4t
3

)))
, t ∈ [0,6π]

The images of a saddle deltoid γ (in blue) over a saddle and its corresponding focal curve Cγ (in
red) are displayed on Figure 9 for r = 2.

Figure 10 shows the images of a deltoid α (in orange) and the corresponding generalized
focal curve β (in green) for r = 2.
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5.3.2 A saddle astroid and its focal curve

For R = 4r the hypocycloid α is called an astroid and the corresponding curve γ is a saddle
astroid with a parametric equation

γ(t) =
(

4r cos3
( t

4

)
,4r sin3

( t
4

)
,−r2

(
15cos

( t
2

)
+ cos

(
3t
2

)))
, t ∈ [0,8π]

The images of a saddle astroid γ (in blue) over a saddle and the corresponding focal curve Cγ

(in red) are presented on Figure 11 for r = 1. Figure 12 displays images of a astroid α (in orange)
and the corresponding generalized focal curve β (in green) for r = 1.
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Figure 11
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