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ABSTRACT: Dynamic mode decomposition (DMD) is a data-driven modeling technique suit-

able to analyze flow structures in numerical and experimental data. It is widely used to extract temporal

information about coherent structures from data. In its standard form, however, it cannot simulta-

neously extract information on temporal and spatial development, such as wave number and spatial

growth rate, which are essential in fully developed flows. Spatio-temporal dynamic mode decomposi-

tion (STDMD) is an extension of DMD designed to handle spatio-temporal datasets. The framework

is extended to analyze data that varies both spatially and temporally. In this paper we introduce an

augmented modification of the STDMD method. It consists of applying delay-embedded coordinates to

STDMD sequentially, in time and space. Using this method, dominant frequencies, wavenumbers, and

their harmonics can be accurately calculated for complex flows. With different illustrative examples, we

demonstrate the applicability of the introduced technique.
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1 Introduction

Dynamic mode decomposition (DMD method), introduced by Schmid in [1], as a method

for analyzing data from numerical simulations and laboratory experiments in the fluid dynamics

field. It is a mathematical technique for identifying spatiotemporal coherent structures from high-

dimensional data. After its introduction, the method is now used in a variety of fields, including

video processing [2], epidemiology [3], robotics [4], neuroscience [5], financial trading [6, 7, 8],

cavity flows [9, 10] and various jets [11, 12]. For a review of the DMD literature, we refer the

reader to [13, 14, 15, 16, 17]. For some recent results on the topics of some derivative DMD

techniques, DMD for non-uniformly sampled data, higher order DMD method and parallel imple-

mentations of DMD, we recommend to the reader [18, 19, 20, 21, 22, 23, 24, 25, 26], see also

[27, 28, 29, 30, 31, 32, 33].

Although the DMD method has been established as a leading technique for extracting tempo-

ral information about coherent structures from high-dimensional data, in its standard form it cannot

simultaneously extract temporal and spatial evolution information, including wavenumber and spa-

tial growth rate, which is essential in fully developed flows. There is an extension of DMD, the

so-called spatio-temporal dynamic mode decomposition (STDMD method), used to handle spatio-

temporal datasets, see [34, 35]. STDMD extends the framework for analyzing data that varies

both spatially and temporally. In this way, spatial structures can be extracted along with their tem-

poral evolution. A comprehensive mathematical framework for sequential and parallel STDMD

approaches is presented in our recent publication [36]. A modification of the STDMD with delay-

embedded coordinates is also presented there. The extension is called parallel delay-embedding

DMD. It simultaneously decomposes spatio-temporal data across both spatial and temporal dimen-

sions, providing insights into the interplay between spatial and temporal dynamics.

In this article, we provide an extension to the STDMD using the delay-embedding approach,

but unlike [36] here we use the sequential approach. In contrast to the parallel approach, sequential

involves decomposing spatio-temporal data sequentially along the temporal axis, capturing both

*Partially supported by Scientific Research Grant RD-21-342/01.03.2024 of Shumen University.
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spatial and temporal dynamics separately. It enables the identification of spatial structures evolv-

ing over time and their corresponding temporal dynamics. The extension is labeled augmented

sequential STDMD.

The outline of the paper is as follows: In the rest of Section 1, for completeness of the

exposition, we briefly describe DMD, STDMD and augmented DMD frameworks. In Section 2,

we propose and discuss the new approach augmented sequential STDMD. Numerical results are in

Section 3 and the conclusion is in Section 4.

1.1 Dynamic mode decomposition (DMD)

In this paragraph, a brief introduction to the classical dynamic mode decomposition (DMD)

framework is provided. For details, we refer the reader to [14, 15, 16] and the references therein.

Consider the system of time-invariant ordinary differential equations of the form

(1) ẋ(t) = f (x(t))

where x ∈ Rn is the state vector and f : Rn → Rn is a nonlinear map (n ≫ 1). Let the discrete-time

representation of (1) be

(2) xk+1 = F(xk),

where xk ∈ Rn is a high-dimensional state vector sampled at tk = k△t for k = 0, . . . ,m, and F is

an unknown map that describes the evolution of the state vector between two subsequent sampling

times. The initial condition is defined by x(0) = x0. Suppose that the evolution of the high-

dimensional state x is governed by some underlying low-dimensional dynamics. Then, the DMD

computes a data-driven linear approximation to the system (2) as follows: the sequential set of data

(3) D = [x0, . . . ,xm]

is arranged into the following two large data matrices

(4) X = [x0, . . . ,xm−1] and Y = [x1, . . . ,xm].

The goal of the DMD approach is to find a relationship between the future state xk+1 and the

current state xk, given by

(5) xk+1 = Axk,

where A ∈ Rn×n is called the DMD operator. The solution of (5) may be expressed simply in terms

of the eigenvalues λ j and eigenvectors φ j of A:

(6) xk =
r

∑
j=1

φ jλ
k
j b j = ΦΛkb,

where Φ is the eigenvector matrix of A, Λ is the diagonal matrix of eigenvalues Λ = diag{λi},

b = Φ†x0, and Φ† is the Moore–Penrose pseudoinverse of Φ. The parameter r is determined by

the low-rank eigendecomposition of matrix A.
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1.2 Augmented DMD (Delay-embedding DMD or Hankel DMD)

Delay-embedding is also an important technique when the temporal or spectral complexity

of a dynamical system exceeds the spatial complexity, for example, in systems characterized by

a broadband spectrum or spatially undersampled. In this case, we arrive at a ’short-and-wide’,

rather than a ’tall-and-skinny’, data matrix D , and the standard algorithm fails at extracting all

relevant spectral features. Delay-embedding DMD (or Hankel DMD) overcomes several short-

comings of the standard DMD method by extending its capabilities to handle nonlinear dynamics,

nonuniformly sampled data, long-term temporal behavior, high-dimensional datasets, and noisy

data. This makes it a more versatile and robust technique for dynamic mode decomposition in

various applications. The Takens embedding theorem [37] provides a rigorous framework for an-

alyzing the information content of measurements of a nonlinear dynamical system. To implement

delay-embedding DMD, given the data sequence D in (3), we stack s time-shifted copies of the

data to form the augmented input matrix. The following Hankel matrix is formed:

(7) Daug =









x1 x2 . . . xm−s+1

x2 x3 . . . xm−s+2

. . . . . . . . . . . .

xs xs+1 . . . xm









,

where the applied embedding dimension is s. The augmented data matrix Daug is then used in

place of D and processed by the standard DMD algorithm. The DMD algorithm prescribed in

Equations (3)–(6) is applied to the augmented matrices Xaug,Yaug ∈ R(n.s)×(m−s) in place of X and

Y , giving eigenvalues Φaug and modes Λaug. The first n rows of Φaug correspond to the current-state

DMD modes and are used to forecast x(t). Arbabi and Mezić [38] have shown the convergence

of this time-shifted approach to the eigenfunctions of the Koopman operator. They also illustrated

remarkable improvements in the prediction of simple and complex fluid systems. Further examples

and theoretical results on delay-embedding and the Hankel viewpoint of Koopman analysis are

given by Brunton et al. [39] and Kamb et al. [40]. They demonstrated that linear time-delayed

models are an effective and efficient tool to capture nonlinear and chaotic dynamics.

1.3 Spatio-temporal DMD (ST-DMD)

The idea behind the spatio-temporal extension of the DMD method is to extend the appli-

cation range of DMD by implementing the simultaneous capture of both spatial and temporal

dynamics. This approach is particularly useful for analyzing complex systems where dynamics

evolve both in space and time, such as fluid flows, biological systems, and climate phenomena. In

principle, this expansion can be obtained in two ways:

i). Sequential approach. A temporal DMD algorithm is first applied to the snapshot matrix

and a spatial DMD algorithm is applied to the spatial modes. Obviously, the order in which tempo-

ral and spatial DMDs are applied can be reversed, and the result of the direct and reverse methods

is not identical.

ii). Parallel approach. Reduced SVD is first applied to the snapshot matrix D, and then,

spatial and temporal DMD algorithms are applied to the rescaled left and right singular vector

matrices.
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2 Sequential STDMD algorithms

Our goal in this study is to present a delayed coordinate modification of the sequential

STDMD method. A corresponding modification for the parallel STDMD method can be seen

in [36]. In this section, we will first review the mathematical framework of sequential STDMD and

then present its modification with delay-embedded coordinates.

2.1 Sequential STDMD

In the following, we provide a detailed mathematical description of the sequential STDMD

approach, which we will extend by delayed coordinates in the next paragraph. Sequential STDMD

involves decomposing spatio-temporal data sequentially along the temporal axis, capturing both

spatial and temporal dynamics separately. This approach enables the identification of spatial struc-

tures evolving over time and their corresponding temporal dynamics. For conventional DMD, the

temporal information (temporal growth rate and angular frequency) is explicitly included in the

eigenvalue matrix Λ, whereas the spatial information (spatial growth rate and wavenumber) is im-

plicitly hidden in the dynamic mode matrix F. Therefore, our goal is to decompose dynamic modes

in a certain way to obtain spatial information.

Let us apply the standard DMD method described above to the input data D specified in (3),

which results in temporal DMD expansion

(8) xk = ΦΛkb,

where Φ = UW is the matrix of DMD modes, Λ is the matrix of DMD eigenvalues and b is

the vector of amplitudes. Matrix U in expression of Φ is from the reduced SVD decomposition

X =UΣV ∗, where U ∈ Rm×r
,Σ ∈ Rr×r and V ∈ Rn×r; see [14, 15].

It is straightforward to show that snapshots data D has the following equivalent expression:

(9) D = Φdiag{bi}Vand(λ ) ,

where Vand(λ ) is a Vandermonde matrix

(10) Vand(λ ) =











1 λ1 . . . λ m
1

1 λ2 . . . λ m
2

...
...

. . .
...

1 λr . . . λ m
r











.

This demonstrates that the temporal evolution of the dynamic modes is governed by the Vander-

monde matrix, which is determined by the r complex eigenvalues λi of reduced DMD operator

Ã = U∗AU containing information about the underlying temporal frequencies and growth/decay

rates.

Note that the spatial information, as spatial growth rate and wavenumber, of the dynamic in

consideration is implicitly hidden in the dynamic mode matrix Φ. We can use the row-vectors of

the DMD mode matrix Φ to get spatial expansion similar to (6). Let us denote

(11) D̄ = ΦT = [ȳ0, . . . , ȳn] ,
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where ȳi is the i-th column-vector of D̄ . Note that the matrix D̄ has full rank r. Applying the

standard DMD approach to data D̄ , we get the following expansion according to (6):

(12) ȳk = Φ̄Λ̄kb̄ ,

where Φ̄ is the eigenvector matrix, Λ̄ = diag{λ̄i} is the diagonal matrix of associated eigenvalues

of the corresponding DMD operator, and b̄ = Φ̄−1ȳ0.

Then, for the full-data matrix D , we get the following matrix-form presentation:

(13) D =V T
and

(

λ̄
)

diag
{

b̄i

}

Ψdiag{bi}Vand(λ ),

where r× r matrix

(14) Ψ = Φ̄T

is the matrix of spatio-temporal DMD modes.

The following algorithm summarizes the steps for sequential STDMD:

Algorithm 1: Sequential STDMD

1. Perform the standard DMD approach to data set D

and compute DMD modes, eigenvalues and amplitudes:

Φ, Λ and b.

2. Define the spatial data matrix as transposed DMD modes:

D̄ = ΦT
.

3. Perform the standard DMD approach to data set D̄ and

compute DMD modes, eigenvalues and amplitudes:

Φ̄, Λ̄ and b̄.

4. Compute the matrix of spatio-temporal DMD modes

Ψ = Φ̄T
.

For the reconstruction of snapshots in D , we get similar to (6) expression

(15) x
(k)
s =

r

∑
i, j=1

ψi jλ̄
s
i b̄iλ

k
j b j,

where x
(k)
s is the s-th coordinate of state xk.

We also can convert discrete-time eigenvalues λ̄i and λ j to the continuous time eigenvalues

ᾱi and α j, respectively. The conversion formulas are

(16) α j =
lnλ j

△t
and ᾱi =

ln λ̄i

△x
for i, j = 1, . . . ,r .

Let us denote

(17) α j = δ j + iω j and ᾱi = νi + iκi,
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where δ j are the temporal growth rates, ω j are the (temporal) frequencies, νi are the spatial growth

rates, and the (spatial) wavenumbers are κi. The the corresponding continuous time expansion of

(15) is following:

(18) x
(k)
s =

r

∑
i, j=1

ψi jb̄ib je
(δ j+iω j)t+(νi+iκi)x

.

2.2 Augmented sequential STDMD

As already mentioned, traditional DMD approaches are limited in their ability to capture

the full complexity of nonlinear and non-stationary systems, particularly when dealing with high-

dimensional and noisy datasets. Due to the fact that in Algorithms 1 the standard DMD method

is applied sequentially, it inherits the disadvantages of the DMD method. To address these limi-

tations, we will propose an extension of STDMD algorithm using the delay-embedding approach

described in Section1. This approach redesigns the input data of the system, creating new state

variables. However, the introduction of the new variables is made at the expense of reducing the

number of samples in the training data set. Hence, the number of these new variables (number

of rows in the Hankel matrix), in (7), has to be a balance between the ability to detect dominant

modes and the accuracy of the estimated model. The following algorithm (Algorithm 2) provides

a step-by-step implementation of augmented sequential spatio-temporal DMD:

Algorithm 2: Augmented sequential STDMD

1. Perform augmented DMD approach to data set D

and compute temporal DMD modes, eigenvalues and amplitudes:

Φ, Λ and b.

2. Define the spatial data matrix as transposed DMD modes:

D̄ = ΦT
.

3. Perform augmented DMD approach to data set D̄ and

compute spatial DMD modes, eigenvalues and amplitudes:

Φ̄, Λ̄ and b̄.

4. Compute the matrix of spatio-temporal DMD modes

Ψ = Φ̄T
.

The STDMD approach, augmented with delay-embedding, offers enhanced computational

efficiency compared to STKD. By augmenting the dataset with delayed observations, the analysis

captures underlying dynamics more effectively, reducing the impact of noise on mode identifi-

cation and reconstruction. Overall, the delay-embedding STDMD enhances the accessibility and

usability of the proposed approaches, making them more practical and widely applicable to re-

searchers and practitioners in various fields.

For the reconstruction of snapshots in D , we get similar to (15) expression

(19) x
(k)
s =

rs

∑
i=1

rt

∑
j=1

ψi jλ̄
s
i b̄iλ

k
j b j,
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where x
(k)
s is the s-th coordinate of state xk. In (19) rt denotes the number of temporal DMD modes

determined at step 1 of Algorithm 2, and rs denotes the number of spatial DMD modes determined

at step 3 of Algorithm 2.

The corresponding continuous time expansion of (19) is following:

(20) x
(k)
s =

rs

∑
i=1

rt

∑
j=1

ψi jb̄ib je
(δ j+iω j)t+(νi+iκi)x

.

Expression (20), compared to (18), uses a larger number of temporal and spatial DMD modes, as

a result of delayed coordinates approach in Algorithm 2.

3 Numerical examples

Here, we will illustrate the introduced approach sequential augmented STDMD (Algorithm 2).

The considered examples are benchmark, and through them, we illustrate the ability of the pro-

posed scheme to accurately calculate spatiotemporal DMD modes and eigenvalues, including spa-

tial wavenumbers and growth rates and temporal frequencies and growth rates.

Example 1: Superposition of three sine waves with exponential decay

Let us consider a wave-field that is a combination of three sine waves with different wavenum-

bers and frequencies, and decaying exponentially in time. Consider a spatio-temporal signal:

(21) u(x, t) = e−at (sin(k1x−ω1t)+ sin(k2x−ω2t)+ sin(k1x−ω3t)) ,

where:

• k1 and k2 are the wavenumbers of the first two waves (for the third wave we use the same

wavenumber as for the first wave);

• ω1,ω2 and ω3 are the angular frequencies of the three waves;

• a is the exponential damping factor.

We set the parameters to: k1 = 2π ,k2 = 3π , ω1 = 2π ,ω2 = 4π ,ω3 = 6π and a = 0.5. In order to

apply the augmented sequential STDMD method, we discretize x and t in the sampled intervals

0 ≤ x ≤ 2 and 0 ≤ t ≤ 2, using steps △x =△t = 0.01. Generated data are 201×201, with rank

one, which yields unsatisfactory results with the pure temporal DMD method.

The 3D visualization of signal is depicted in Figure 1 (left) and the color map is in Figure 1

(right). This pattern is obtained with a spectral spatial and temporal complexity of 4 and 6, respec-

tively. This is because it involves 4 wavenumbers: ±k1 and ±k2, and 6 frequencies: ±ω1,±ω2

and ±ω3.

Performing augmented sequential STDMD (Algorithm 2), with time-delaying index 2 and

spatial-delaying index 1, we identify all the correct wavenumbers and frequencies. Figure 2 depicts

the growth rate–frequency and amplitude–frequency diagrams. Using expression (15) we obtain

an approximation of the dynamics data and reconstruct the snapshots with a relative RMS error:

1.8933×10−13.

We note that in this example it was enough to use lagging coordinates only in the first part

of Algorithm 2 (in step 1), and in the second part (step 3) the standard DMD method was used.
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Figure 1: 3D visualization (left) and color-map (right) of spatio-temporal signal (21).
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Figure 2: Left: Spatial growth rate-wavenumber (’+’) and temporal growth rate-frequency (’o’);

Right: Spatial amplitudes-wavenumber (’+’) and temporal amplitudes-frequency (’o’).

Example 2: Spatiotemporal signal of a traveling-wave

The toy model considered here was introduced in [41] and represents a combination of trav-

eling waves, defined as

(22) u(x, t) =

(

1

2
+ sin(x)

)(

2cos(k1x−ω1t)+
1

2
cos(k2x−ω2t)

)

,

with

k1 = 2,k2 = 10,ω1 = 2π and ω2 =
√

2.

The model is visualized in Figure 3, see also [35]. This pattern is obtained with the following 12

wavenumber/frequency pairs:

(23)
±(k1,ω1),±(k1 −1,ω1),±(k1 +1,ω1),

±(k2,ω2),±(k2 −1,ω2),±(k2 +1,ω2).
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Figure 3: Visualization of model (22).

Note that the pattern is temporally quasiperiodic, because the two involved frequencies, ω1

and ω2, are incommensurable, but it is spatially periodic, with period equal to 2π (wavenumber

equal to 1).

Figure 4: Color map for the model (22).

We apply the augmented sequential STDMD method in the training spatio-temporal set 0 ≤
x ≤ 50, 0 ≤ t ≤ 20, considering 500 equispaced values of x and 200 equispaced values of t, with

△x =△t = 0.1. The color map of the model is shown in Figure 4.

Performed augmented sequential STDMD (Algorithm 2), with time-delaying index 1 and

spatial-delaying index 3. With this selection, Algorithm 2 recognizes the exact wavenumber/frequency

pairs given in (23); see the dispersion diagram in Fig. 5.

Figure 6 depicts the growth rate–frequency and amplitude–frequency diagrams. We recon-

structs the model with a relative RMS error: 1.2× 10−11. The results are identical to those in

[35], where the spatio-temporal Koopman decomposition (STKD) method is applied to the same

example and input data.
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Figure 5: Dispersion diagram resulting from applying the augmented sequential STDMD method

to the model (22).
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Figure 6: Left: Spatial growth rate-wavenumber (’+’) and temporal growth rate-frequency (’o’);

Right: Spatial amplitudes-wavenumber (’+’) and temporal amplitudes-frequency (’o’).

4 Conclusion

The purpose of this study was to introduce a new modification of spatio-temporal DMD

method by incorporating delay-embedding techniques. We refer the new echnique augmented

sequential STDMD method. The matrix representations underlying this technique is provided,

highlighting their respective computational frameworks for analyzing spatiotemporal data.

We have demonstrated the performance of the presented algorithm with illustrative numerical

examples. The numerical results show that the introduced algorithm is an alternative to the parallel

deley-embedded STDMD and can be used in various fields of application.
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